Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-05T15:40:41.726Z Has data issue: false hasContentIssue false

Chapter 3 - Melanocytic tumors

Published online by Cambridge University Press:  05 July 2016

Ophelia E. Dadzie
Affiliation:
Hillingdon Hospitals NHS Foundation Trust
Meera Mahalingam
Affiliation:
VA Consolidated Laboratories, New England
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Primary Sources

Kerl, H., Wolf, I.H., Kerl, K., et al. (2011). Ancient melanocytic nevus: A simulator of malignant melanoma. Am J Dermatopathol, 33, 127–30.CrossRefGoogle ScholarPubMed
Jih, D.M., Morgan, M.B., Bass, J., et al. (2002). Oncocytic metaplasia occurring in a spectrum of melanocytic nevi. Am J Dermatopathol, 24, 468–72.Google Scholar
Martinez-Casimiro, L., Sánchez Carazo, J.L., and Alegre, V. (2009). Balloon cell nevus. J Eur Acad Dermatol Venereol, 23, 236–7.Google Scholar

Secondary Sources

Mooney, M.A., Barr, R.J., and Buxton, M.G. (1995). Halo nevus or halo phenomenon? A study of 142 cases. J Cut Pathol, 22, 342–8.CrossRefGoogle ScholarPubMed
Sotiriadis, D., Lazaridou, E., Patsatsi, A., et al. (2006). Does halo nevus without halo exist? J Eur Acad Dermatol Venereol, 20, 1394–6.CrossRefGoogle ScholarPubMed
Schallreuter, K.U., Kothari, S., Elwary, S., et al. (2003). Molecular evidence that halo in Sutton's nevus is not vitiligo. Arch Dermatol Res, 295, 223–8.CrossRefGoogle Scholar
Akasu, R., From, L., and Kahn, H.J. (1994). Characterization of the mononuclear infiltrate involved in regression of halo nevi. J Cutan Pathol, 21, 302–11.Google Scholar
Brazzeli, V., Larizza, D., Martinetti, M., et al. (2004). Halo nevus, rather than Vitiligo is a typical dermatologic finding of Turner's syndrome: Clinical, genetic and immunogenetic study on 72 patients. J Am Acad Dermatol, 51, 354–8.Google Scholar
Herd, R.M. and Hunter, J.A.A. (1998). Familial halo nevi. Clin Exp Dermatol, 23, 68–9.Google Scholar
Meyerson, L.B. (1971). A peculiar papulosquamous eruption involving pigmented nevi. Arch Dermatol, 103, 510–12.Google Scholar
Krischer, J., Pechère, M., Salomon, D., et al. (1999). Interferon alfa 2b-induced Meyerson's nevi in a patient with dysplastic nevus syndrome. J Am Acad Dermatol, 40, 105–6.Google Scholar
Brenan, J., Kossard, S., and Krivanck, J. (1985). Halo eczema around melanocytic nevi. Int J Dermatol, 24, 226–9.CrossRefGoogle ScholarPubMed
Feal-Cortizas, C., Vargas-Diez, E., Buezo, G.F., et al. (1997). Meyerson's nevus immunohistochemical finding in two cases. Australas J Dermatol, 38, 222.Google Scholar
Cook-Norris, R.H., Zic, J.A., and Boyd, A.S. (2008). Meyerson's nevus: a clinical and histopathologic study of 11 cases. Australas J Dermatol, 49, 191–5.CrossRefGoogle ScholarPubMed
Elenitsas, R. and Halpern, A.C. (1996). Eczematous halo reaction in atypical nevi. J Am Acad Dermatol, 34, 357–61.Google Scholar
Lazova, R., Lester, B., Glusac, E.J., et al. (2005). The characteristic histopathologic features of nevi on and around the ear. J Cutan Pathol, 32, 40–4.Google Scholar
Elder, D.E. (2006). Precursors to melanoma and their mimics: nevi of special sites. Mod Pathol, 19, S420.Google Scholar
Hofmann-Wellenhof, R. (2013). Special criteria for special locations – Scalp, mucosal and milk line. Dermatol Clin, 13, 625–36.Google Scholar
Hosler, G.A., Moresi, J.M., and Barrett, T.L. (2008). Nevi with site-related atypia: a review of melanocytic nevi with atypical histologic features based on anatomic site. J Cutan Pathol, 25, 889–98.Google Scholar
Fabrizi, G., Pagliarello, C., Parente, P., et al. (2007). Atypical nevi of the scalp in adolescents. J Cutan Pathol, 34, 365–9.Google Scholar
Ball, N.J. and Golitz, L.E. (1994). Melanocytic nevi with focal atypical epithelioid cell components: a review of seventy-three cases. J Am Acad Dermatol, 30, 724–9.CrossRefGoogle ScholarPubMed
Cooper, P.H. (1992). Deep penetrating (plexiform spindle cell) nevus: a frequent participant in combined nevus. J Cutan Pathol, 19, 172–80.Google Scholar
Mehregan, D.A. and Mehregan, A.H. (1993). Deep penetrating nevus. Arch Dermatol, 129, 328–31.CrossRefGoogle ScholarPubMed
Robson, A., Morley-Quante, M., Hempel, H., et al. (2003). Deep penetrating nevus: clinicopathologic study of 31 cases with further delineation of histologic features allowing distinction from other pigmented benign melanocytic lesions and melanoma. Histopathology, 43, 529–37.Google Scholar
Seab, J.A., Graham, J.H., and Helwig, E.B. (1989). Deep penetrating nevus. Am J Surg Pathol, 13, 3944.Google Scholar
Maize, J.C. Jr, McCalmont, T.H., Carlson, J.A., et al. (2005). Genomic analysis of blue nevi and related dermal melanocytic proliferations. Am J Surg Pathol, 29, 1214–20.CrossRefGoogle ScholarPubMed
Bender, R.P., McGinnis, M.J., Esmay, P., et al. (2013). Identifications of HRAS mutations and absence of GNAQ or GNA11 mutations in deep penetrating nevi. Mod Pathol, 26, 1320–8.Google Scholar
King, R., Hayzen, B.A., Page, R.N., et al. (2009). Recurrent nevus phenomenon: a clinicopathologic study of 357 cases and histologic comparison with melanoma with regression. Mod Pathol, 22, 611–17.Google Scholar
Hoang, M.P., Prieto, V.G., Burchette, J.L., et al. (2001). Recurrent melanocytic nevus: a histologic and immunohistochemical evaluation. J Cutan Pathol, 28, 400–6.Google Scholar
Fox, J.C., Reed, J.A., and Shea, C.R. (2011). The recurrent nevus phenomenon: a history of challenge, controversy, and discovery. Arch Pathol Lab Med, 135, 842–6.Google Scholar
Park, H.K., Leonard, D.D., Arrington, J.H. III, et al. (1987). Recurrent melanocytic nevi: Clinical and histologic review of 175 cases. J Am Acad Dermatol, 17, 285–92.CrossRefGoogle ScholarPubMed
Langel, D.L. and White, W.L. (2000). Pseudomelanoma after non-biopsy trauma: expanding the spectrum of persistent nevi. J Cutan Pathol, 27, 562.Google Scholar
Emley, A., Nguyen, L.P., Yang, S., et al. (2011). Somatic mutations in GNAS in amelanotic/hypomelanotic blue nevi. Hum Pathol, 42, 136–40.Google Scholar
Van Raamsdonk, C.D., Fitch, K.R., de Angelis, M.H., et al. (2004). Effects of G-protein mutations on skin color. Nat Genet, 36, 961–8.Google Scholar
Saldanha, G., Purnell, D., Fletcher, A., et al. (2004). High BRAF mutation frequency does not characterize all melanocytic tumor types. Int J Cancer, 111, 705–10.Google Scholar
Held, L., Eigentler, T.K., Metzler, G., et al. (2013). Proliferative activity, chromosomal aberrations, and tumor-specific mutations in the differential diagnosis between blue nevi and melanoma. Am J Pathol, 182, 640–5.Google Scholar
Martin, R.C., Murali, R., Scolyer, R.A., et al. (2009). So-called “malignant blue nevus”. Cancer, 115, 2949–55.Google Scholar
Cabral, E.S., Chen, F.W., Egbert, B.M., et al. (2014). Acquired Blue Nevi in Older Individuals: Retrospective Case Series From a Veterans Affairs Population, 1991 to 2013. JAMA Dermatol, 150, 873–6CrossRefGoogle ScholarPubMed
Van Raamsdonk, C.D., Bezrookove, V., Green, G., et al. (2008). Frequent somatic mutations of GNAQ in uveal melanoma and blue nevi. Nature, 457, 599602.Google Scholar
Gupta, D. and Thappa, D.M. (2003). Mongolian spots. Indian J Dermatol Venereol Leprol, 79, 469–78.Google Scholar
Ee, H.L., Wong, H.C., Goh, C.L., et al. (2006). Characteristics of Hori nevus: a prospective analysis. Br J Dermatol, 154, 50–3.Google Scholar
Ono, T., Egawa, K., Kayashima, K., et al. (1991). Late onset dermal melanocytosis: An upper back variant. J Dermatol, 18, 97103.Google Scholar
Bashiti, H.M., Blair, J.D., Triska, R.A., et al. (1981). Generalized dermal melanocytosis. Arch Dermatol, 117, 791–3.CrossRefGoogle ScholarPubMed
Dekio, S., Koike, S., and Jidoi, J. (1989). Nevus of Ota with nevus of Ito – report of a case with cataract. J Dermatol, 16, 164–6.Google Scholar
Hidano, A., Kajima, H., and Endo, Y. (1965). Bilateral nevus Ota associated with nevus Ito: a case of pigmentation on the lips. Arch Dermatol, 91, 357–9.Google Scholar
Wititsuwannakul, J., Mason, A.R., Klump, V.R., et al. (2003). Neuropilin-2 as a useful marker in the differentiation between Spitzoid malignant melanoma and Spitz nevus. J Am Acad Dermatol, 68, 129–37.Google Scholar
Requen, C., Rubio, L., Traves, V., et al. (2012). Fluorescence in situ hybridization for the differential diagnosis between Spitz nevus and spitzoid melanoma. Histopathology, 61, 899909.Google Scholar
Weisner, T., He, J., Yelensky, R., et al. (2014). Kinase fusions are frequent in Spitz tumors and spitzoid melanomas. Nat Commun, 5, 19.Google Scholar
Horst, B.A., Terrano, D., Fang, Y., et al. (2013). 9p21 gene locus in Spitz nevi of older individuals: absence of cytogenetic and immunohistochemical findings associated with malignancy. Hum Pathol, 44, 2822–8.Google Scholar
Gerami, P., Busam, K., Cochran, A., et al. (2014). Histomorphologic assessment and interobserver diagnostic reproducibility of atypical spitzoid melanocytic neoplasms with long term follow-up. Am J Surg Pathol, 38, 934–40.Google Scholar
Busam, K.J., Sung, J., Wiesner, T., et al. (2013). Combined BRAFV600E positive melanocytic lesions with large epithelioid cells lacking BAP1 expression and conventional nevomelanocytes. Am J Surg Pathol, 37, 193–9.Google Scholar
Barnhill, R.L. (2006). The Spitzoid lesion: rethinking Spitz tumors, atypical variants, ‘Spitzoid melanoma’ and risk assessment. Mod Pathol, 19, S21S33.CrossRefGoogle ScholarPubMed
Emley, A., Yang, S., Wajapeyee, N., et al. (2010). Oncogenic BRAF and the tumor suppressor IGFBP7 in the genesis of atypical spitzoid nevomelanocytic proliferations. J Cut Pathol, 37, 344–9.CrossRefGoogle ScholarPubMed
Clark, W.H. Jr, Elder, D.E., Guerry, D.T., et al. (1984). A study of tumor progression: the precursor lesions of superficial spreading and nodular melanoma. Hum Pathol, 15, 1147–65.Google Scholar
Hussein, M.R. (2005). Melanocytic dysplastic nevi occupy the middle ground between benign melanocytic nevi and cutaneous malignant melanomas: emerging clues. J Clin Pathol, 58, 453–6.CrossRefGoogle ScholarPubMed
Tucker, M.A., Halpern, A., Holly, E.A., et al. (1997). Clinically recognized dysplastic nevi: a central risk factor for cutaneous melanoma. JAMA, 18, 1439–44.Google Scholar
Shors, A.R., White, E., Argenyi, Z., et al. (2006). Dysplastic nevi with moderate to severe histologic dysplasia: a risk factor for melanoma. Br J Dermatol, 155, 988–93.CrossRefGoogle ScholarPubMed
Pollock, P.M., Harper, U.L., Hansen, S., et al. (2003). High frequency of BRAF mutations in nevi. Nat Genet, 33, 1920.CrossRefGoogle ScholarPubMed
Hussein, MR, Roggero, E, Tuthill, RJ, Wood, GS, Sudilovsky, O. (2003). Identification of novel deletion Loci at 1p36 and 9p22–21 in melanocytic dysplastic and cutaneous malignant melanomas. Arch Dermatol, 139, 816–18.Google Scholar
DeCarlo, K., Yang, S., Emley, A., et al. (2010). Oncogenic BRAF positive dysplastic nevi and the tumor suppressor IGFBP7 – challenging the concept of dysplastic nevi as precursor lesions? Hum Pathol, 41, 886–94.Google Scholar
Ko, C.J., McNiff, J.M., and Glusac, E.J. (2009). Melanocytic nevi with features of Spitz nevi and Clark's/dysplastic nevi (“Spark's nevi”). J Cut Pathol, 36, 1063–8.Google Scholar
Kutzner, H., Metzler, G., Argenyi, Z., et al. (2012). Histologic and genetic evidence for a variant of superficial spreading melanoma composed predominantly of large nests. Mod Pathol, 25, 838–45.Google ScholarPubMed
Massi, G. and Leboit, P.E. (2014). Superficial spreading pattern of melanoma. In: Massi G, Leboit PE. Histologic Diagnosis of Nevi and Melanoma (pp. 419–24). Germany: Springer.Google Scholar
Ackerman, A.B. (1980). Malignant melanoma: a unifying concept. Hum Pathol, 11, 591–5.Google Scholar
Bastian, B.C. (2003). Understanding the progression of melanocytic neoplasia using genomic analysis: from fields to cancer. Oncogene, 22, 3081–6.Google Scholar
Reed, J.A. and Shea, C.R. (2011). Lentigo maligna: melanoma in situ on chronically sun-damaged skin. Arch Pathol Lab Med, 135, 838–41.Google Scholar
Clark, W.H. Jr and Mihm, M.C. Jr (1969). Lentigo maligna and lentigo maligna melanoma. Am J Pathol, 55, 3967.Google Scholar
Costello, M.J., Fisher, S.B., and Defeo, C.P. (1959). Melanotic freckle, lentigo maligna. Arch Dermatol, 80, 753–71.Google Scholar
Nybakken, G.E., Sargen, M., Abraham, R., et al. (2013). MITF accurately highlights epidermal melanocytes in atypical intraepidermal melanocytic proliferations. Am J Dermatopathol, 35, 25–9.Google Scholar
Gerami, P., Mafee, M., Lurtsbarapa, T., et al. (2010). Sensitivity of fluorescence in situ hybridization for melanoma diagnosis using RREB1, MYB, Cep6 and 11q13 probes in melanoma subtypes. Arch Dermatol, 146, 273–8.CrossRefGoogle Scholar
Moyes, C.B. and Blessing, K. (2005). Paucicellular lentigo maligna melanoma: an important variant that requires immunocytochemistry for diagnosis. Br J Dermatol, 153, 69.Google Scholar
Akslen, L.A., Angelini, S., Strauma, O., et al. (2005). BRAF and NRAS mutations are frequent in nodular melanoma but are not associated with tumor cell proliferation or patient survival. J Gen Intern Med, 125, 213–17.Google Scholar
Ackerman, A.B. (1980). Nodular melanoma, an unifying concept. Hum Pathol, 11, 591–5.Google Scholar
Clark, W.H. Jr, Elder, D.E., and Van Horn, M. (1986). The biologic forms of malignant melanoma. Hum Pathol, 17, 443–50.Google Scholar
Woodman, S.E. and Davies, M.A. (2010). Targeting KIT in melanoma: a paradigm of molecular medicine and targeted therapeutics. Biochem Pharmacol, 80, 568–74.Google Scholar
Garrido, M.C. and Bastian, B.C. (2009). KIT as a therapeutic target in melanoma. J Inv Dermatol, 130, 20–7.Google Scholar
Curtin, J.A., Busam, K., Pinkel, D., et al. (2006). Somatic activation of KIT in distinct subtypes of melanoma. J Clin Oncol, 24, 4340–6.Google Scholar
Beadling, C., Jacobson-Dunlop, E., Hodi, F.S., et al. (2008). KIT gene mutations and copy number in melanoma subtypes. Clin Cancer Res, 14, 6821–8.Google Scholar
Ashida, A., Takata, M., Murata, H., et al. (2009). Pathologic activation of KIT in metastatic tumors of acral and mucosal melanomas. Int J Cancer, 124, 862–8.Google Scholar
Takata, M., Murata, H., and Saida, T. (2009). Molecular pathogenesis of malignant melanoma: a different perspective from the studies of melanocytic nevus and acral melanoma. Pigment Cell Melanoma Res, 23, 6471.Google Scholar
Torres-Cabala, C.A., Wang, W.L., Trent, J., et al. (2009). Correlation between KIT expression and KIT mutation in melanoma: A study of 173 cases with emphasis on the acral-lentiginous/mucosal type. Mod Pathol, 22, 1446–56.Google Scholar
Bastian, B.C., Kashani-Sabet, M., Hamm, H., et al. (2000). Gene amplifications characterize acral melanoma and permit the detection of occult tumor cells in the surrounding skin. Can Res, 60, 1968–73.Google ScholarPubMed
Puccio, F.B. and Chian, C. (2011). Acral junctional nevus versus acral lentiginous melanoma in situ: a differential diagnosis that should be based on clinicopathologic correlation. Arch Pathol Lab Med, 135, 847–52.Google Scholar
Jaramillo, B.A., Ganjei, P., Averette, H.E., et al. (1992). Malignant melanoma of the vulva. Gynecol Oncol, 46, 216–21.Google Scholar
Butt, A., Roberts, D.L., Calvert, J.P., et al. (1996). Primary malignant melanomas of the cervix uteri and vulva. Br J Dermatol, 135, 858–9.Google Scholar
Torres-Cabala, C.A., Wang, W.L., Trent, J., et al. (2009). Correlation between KIT expression and KIT mutation in melanoma: a study of 173 cases with emphasis on the acral-lentiginous/mucosal type. Mod Pathol, 22, 1446–56.Google Scholar
Hofmann-Wellenhof, R. (2013). Special criteria for special locations – Scalp, mucosal and milk line. Dermatol Clin, 13, 625–36.Google Scholar
Craig, R.M., Glass, B.J., and Rhyne, R.R. (1982). Malignant melanoma: metastasis to the tonsil. J Am Dent Assoc, 104, 893–4.Google Scholar
Ohashi, K., Kasuga, T., Tanaka, N., et al. (1992). Malignant melanomas of the oral cavity: heterogeneity of pathologic and clinical features. Virchows Arch A, 420, 4350.Google Scholar
Weissinger, S.E., Keil, P., Silvers, D.N., et al. (2014). A diagnostic algorithm to distinguish desmoplastic from spindle cell melanoma. Mod Pathol, 27, 524–34.Google Scholar
Barnhill, R.l. and Bolognia, J.L. (1995). Neurotropic melanoma with prominent melanization. J Cut Pathol, 22, 450–9.Google Scholar
Reed, R.J. and Leonard, D.D. (1987). Neurotropic melanoma: a variant of desmoplastic melanoma. Arch Dermatol, 123, 907–12.Google Scholar
Warner, T.F., Hafez, G.R., Finch, R.E., et al. (1981). Schwann cell features in neurotropic melanoma. J Cut Pathol, 8, 177–87.Google Scholar
Miller, D.D., Emley, A., Yang, S., et al. (2012). Mixed versus pure variants of desmoplastic melanoma: a genetic and immunohistochemical appraisal. Mod Pathol, 25, 505–15.Google Scholar
Feng, Z., Wu, X., Chen, V., et al. (2011). Incidence and survival of desmoplastic melanoma in the United States, 1992–2007. J Cutan Pathol, 38, 616–24.Google Scholar
Conley, J., Lattes, R., and Orr, W. (1971). Desmoplastic malignant melanoma. Cancer, 28, 914–16.Google Scholar
Baer, S.C., Schultz, D., Synnestvedt, M., et al. (1995). Desmoplasia and neurotropism. Prognostic variables in patients with stage I melanoma. Cancer, 76, 2242–7.Google Scholar
George, E., McClain, S.E., Slingluff, C.L., et al. (2009). Subclassification of desmoplastic melanoma: pure and mixed variants have significantly different capacities for lymph node metastasis. J Cutan Pathol, 36, 425–32.CrossRefGoogle ScholarPubMed
Davison, J.M., Rosenbaum, E., Barrett, T.L., et al. (2005). Absence of V599E BRAF mutations in desmoplastic melanomas. Cancer, 103, 788–92.Google Scholar
Narita, N., Tanemura, A., Murali, R., et al. (2009). Functional RET G691S polymorphism in cutaneous malignant melanoma. Oncogene, 28, 3058–68.Google Scholar
Busam, K.J., Mujumdar, U., Hummer, A.J., et al. (2004). Cutaneous desmoplastic melanoma: reappraisal of morphologic heterogeneity and prognostic factors. Am J Surg Pathol, 28, 1518–25.Google Scholar
Soares de Almeida, L., Requena, L., Rutten, A., et al. (2008). Desmoplastic malignant melanoma: a clinicopathologic analysis of 113 cases. Am J Dermatopathol, 30, 207–15.Google Scholar
Quinn, M.J., Crotty, K.A., Thompson, J.F., et al. (1998). Desmoplastic and desmoplastic neurotropic melanoma: experience with 280 patients. Cancer, 83, 1128–35.Google Scholar
Pawlik, T.M., Ross, M.I., Prieto, V.G., et al. (2006). Assessment of the role of sentinel lymph node biopsy for primary cutaneous desmoplastic melanoma. Cancer, 106, 900–6.Google Scholar
Maurichi, A., Miceli, R., Camerini, T., et al. (2010). Pure desmoplastic melanoma: a melanoma with distinctive clinical behavior. Ann Surg, 252, 1052–7.Google Scholar
Magro, C.M., Crawson, A.N., and Mihm, M.C. (2006). Unusual variants of malignant melanoma. Mod Pathol, 19, S41S70.Google Scholar
Wong, T.Y., Suster, S., Duncan, L.M., et al. (1995). Nevoid melanoma: a clinicopathologic study of seven cases. Hum Pathol, 26, 171–9.Google Scholar
Zembowicz, A., McCusker, M., Chiarelli, C., et al. (2001). Morphologic analysis of nevoid melanoma: a study of 20 cases with a review of the literature. Am J Dermatopathol, 23, 167–75.Google Scholar
Schmoeckel, C., Castro, C.E., and Braun-Falco, O. (1985). Nevoid malignant melanoma. Arch Dermatol Res, 277, 362–9.Google Scholar
Suster, S., Ronnen, M., and Bubis, J.J. (1987) Verrucous pseudonevoid melanoma. J Surg Oncol, 36, 134–7.Google Scholar
Kossard, S. and Wilkinson, B. Small cell (nevoid) melanoma: a clinicopathologic study of 131 cases. Australas J Dermatol, 38, S54–S58.Google Scholar
Gerami, P., Wass, A., Mafee, M., et al. (2009). Fluorescence in situ hybridization for distinguishing nevoid melanomas from mitotically active nevi. Am J Surg Pathol, 33, 1783–8.Google Scholar
Kazakov, D.V., Rutten, A., Kemph, W., et al. (2004). Melanoma with prominent pigment synthesis (Animal-type melanoma), a case report and ultrastructural studies. Am J Dermapathol, 26, 290–7.Google Scholar
Yun, S.J., Han, D.K., Lee, M.C., et al. (2010). Congenital pigment synthesizing melanoma of the scalp. J Am Acad Dermatol, 62, 324–9.CrossRefGoogle ScholarPubMed
Antony, F.C., Sanclemente, G., Shaikh, H., et al. (2006). Pigment synthesizing melanoma (so-called animal type melanoma): a clinicopathologic study of 14 cases of a poorly known distinctive variant of melanoma. Histopathology, 48, 754–62.Google Scholar
Richardson, S., Tannous, Z.S., and Mihm, M.C. Jr (2002). Congenital and infantile melanoma: review of the literature and report of an uncommon variant, pigment-synthesizing melanoma. J Am Acad Dermatol, 47, 7790.CrossRefGoogle ScholarPubMed
Zembowicz, A., Carney, J.A., and Mihm, M.C. (2004). Pigmented epithelioid melanocytoma: a low-grade melanocytic tumor with metastatic potential indistinguishable from animal-type melanoma and epithelioid blue nevus. Am J Surg Pathol, 28, 3140.Google Scholar
Magro, C.M., Crawson, A.N., and Mihm, M.C. (2006). Unusual variants of malignant melanoma. Mod Pathol, 19, S41S70.Google Scholar
Lerner, A.A. and Cage, G.W. (1973). Melanoma in horses. Yale J Biol Med, 46, 646.Google Scholar
Flax, S.H., Skelton, H., Smith, K., et al. (1988). Nodular melanosis due to epithelial neoplasms: A finding not restricted to melanomas. Am J Dermatopathol, 20, 118–22.Google Scholar
Satzger, I., Volker, B., Kapp, A., et al. (2007). Tumoral melanosis involving the sentinel lymph nodes: a case report. J Cut Pathol, 34, 284–6.Google Scholar
Pierard, G.E. (1988). Melanophagic dermatitis and panniculitis. Am J Dermatopathol, 10, 133–6.Google Scholar
Barnhill, R.L., Piepkorn, M., and Busam, K.J. (Eds.). (2004). Malignant melanoma. In: Pathology of Melanocytic Nevi and Malignant Melanoma, 2nd ed. New York: Springer, 342.Google Scholar
Carson, K.F., Wen, D.R., Li, P.X., et al. (1996). Nodal nevi and cutaneous melanomas. Am J Surg Pathol, 20, 834–40.Google Scholar
Lohmann, C.M., Iversen, K., Jungbluth, A.A., et al. (2002). Expression of melanocyte differentiation antigens and ki-67 in nodal nevi and comparison of ki-67 expression with metastatic melanoma. Am J Surg Pathol, 26, 1351–7.Google Scholar
Biddle, D.A., Evans, H.L., Kemp, B.L., et al. (2003). Intraparenchymal nevus cell aggregates in lymph nodes: a possible diagnostic pitfall with malignant melanoma and carcinoma. Am J Surg Pathol, 27, 673–81.Google Scholar
Messina, J.L., Glass, L.F., Cruse, C.W., et al. (1999). Pathologic examination of the sentinel lymph node in malignant melanoma. Am J Surg Pathol, 23, 686–90.Google Scholar
Batistatou, A., Cook, M.G., and Massi, D. (2009). Histopathology report of cutaneous melanoma and sentinel lymph node in Europe: a web-based survey by the Dermatopathology Working Group of the European Society of Pathology. Virchows Arch, 454, 505–11.Google Scholar
Cochran, A.J. (1999). Surgical pathology remains pivotal in the evaluation of ‘sentinel’ lymph nodes. Am J Surg Pathol, 23, 1169–72.Google Scholar
Shidham, V.B., Qi, D.Y., Acker, S., et al. (2001). Evaluation of micrometastases in sentinel lymph nodes of cutaneous melanoma: higher diagnostic accuracy with Melan-A and MART-1 compared with S-100 protein and HMB-45. Am J Surg Pathol, 25, 1039–46.CrossRefGoogle ScholarPubMed
Abrahamsen, H.N., Hamilton-Dutoit, S.J., Larsen, J., et al. (2004). Sentinel lymph nodes in malignant melanoma: extended histopathologic evaluation improves diagnostic precision. Cancer, 100, 1683–91.Google Scholar
Hutchens, K.A., Heyna, R. II, Mudaliar, K., et al. (2013). The new AJCC guidelines in practice: utility of the MITF immunohistochemical stain in the evaluation of single-cell metastasis in melanoma sentinel lymph nodes. Am J Surg Pathol, 37, 933–7.Google Scholar
Frankel, T.L., Griffith, K.A., Lowe, L., et al. (2008). Do micromorphometric features of metastatic deposits within sentinel nodes predict nonsentinel lymph node involvement in melanoma? Ann Surg Oncol, 15, 2403–11.Google Scholar
Dewar, D.J., Newell, B., Green, M.A., et al. (2004). The microanatomic location of metastatic melanoma in sentinel lymph nodes predicts nonsentinel lymph node involvement. J Clin Oncol, 22, 3345–9.Google Scholar
Satzger, I., Volker, B., Al Ghazal, M., et al. (2007). Prognostic significance of histopathologic parameters in sentinel nodes of melanoma patients. Histopathology, 50, 764–72.CrossRefGoogle ScholarPubMed
Gradilone, A., Ribuffo, D., Silvestri, I., et al. (2004). Detection of melanoma cells in sentinel lymph nodes by reverse transcriptase-polymerase chain reaction: prognostic significance. Ann Surg Oncol, 11, 983–7.Google Scholar
Nguyen, T.L., Theos, A., Kelly, D.R., et al. (2013). Mitotically active proliferative nodule arising in a giant congenital melanocytic nevus: a diagnostic pitfall. Am J Dermatopathol, 35, e1621.Google Scholar
Phadke, P.A., Rakheja, D., Le, L.P., et al. (2011). Proliferative nodules arising within melanocytic nevi: A histologic, immunohistochemical and molecular analysis of 43 cases. Am J Surg Pathol, 35, 656–69.CrossRefGoogle ScholarPubMed
Bastian, B.C., Xiong, J., Frieden, I.J., et al. (2002). Genetic changes in neoplasms arising in congenital melanocytic nevi: differences between nodular proliferations and melanomas. Am J Pathol, 161, 1163–9.Google Scholar
Collina, G., Deen, S., Cliff, S., et al. (1997). Atypical dermal nodules in benign melanocytic nevi. Histopathology, 31, 97101.Google Scholar
Raeve, L.E., Claes, A., Ruiter, D.J., et al. (2006). Distinct phenotypic changes between the superficial and deep component of giant congenital melanocytic nevi: a rationale for curettage. Br J Dermatol, 154, 485–92.Google Scholar
Hendrickson, M.R. and Ross, J.C. (1981). Neoplasms arising in congenital giant nevi: morphologic study of seven cases and a review of the literature. Am J Surg Pathol, 5, 109–35.Google Scholar
Herron, M.D., Vanderhooft, S.L., Smock, K., et al. (2004). Proliferative nodules in congenital melanocytic nevi: a clinicopathologic and immunohistochemical analysis. Am J Surg Pathol, 28, 1017–25.Google Scholar
Kuwata, T., Kitagawa, M., and Kusaga, T. (1993). Proliferative activity of primary cutaneous melanocytic tumors. Virchows Arch A, 423, 359–64.Google Scholar
Leech, S.N., Bell, H., Leonard, N., et al. (2004). Neonatal giant congenital nevi with proliferative nodules: a clinicopathologic study and literature review of neonatal melanoma. Arch Dermatol, 140, 83–8.Google Scholar
Lowes, M.A., Norris, D., Whitfeld, M. (2000). Benign melanocytic proliferative nodule within a congenital nevus. Australas J Dermatol, 41, 109–11.Google Scholar
Mancianti, M.L., Clark, W.H., Hayes, F.A., et al. (1990). Malignant melanoma simulants arising in congenital melanocytic nevi do not show experimental evidence for a malignant phenotype. Am J Pathol, 136, 817–29.Google Scholar
Xu, X., Bellucci, K.S., Elenitsas, R., et al. (2004). Cellular nodules in congenital pattern nevi. J Cutan Pathol, 31, 153–9.CrossRefGoogle ScholarPubMed
Brahmbhatt, M., Yang, S., and Mahalingam, M. (2011). Proliferative nodules in congenital nevi – A histopathologic, genomic and immunohistochemical reappraisal. Clin Exp Dermatol Res, 1, 105 (doi:10.4172/2155–9554.1000105)Google Scholar
Meis-Kindblom, J.M. (2006). Clear cell sarcoma of the tendons and aponeuroses: a historical perspective and tribute to the man behind the entity. Adv Anat Pathol, 13, 286–92.Google Scholar
Panagopoulos, I., Mertens, F., Debiec-Rychter, M., et al. (2002). Molecular genetic characterization of the EWS/ATF1 fusion gene in clear cell sarcoma of the tendons and aponeuroses. Int J Cancer, 99, 560–7.Google Scholar
Panagopoulos, I., Mertens, F., Isaksson, M., et al. (2005). Absence of mutations of the BRAF gene in malignant melanoma of soft parts (clear cell sarcoma of tendon and aponeuroses). Cancer Genet Cytogenet, 156,74–6.Google Scholar
Hantschke, M., Mentzel, T., Rütten, A., et al. (2010). Cutaneous clear cell sarcoma: A clinicopathologic, immunohistochemical, and molecular analysis of 12 cases emphasizing its distinction from dermal melanoma. Am J Surg Pathol, 34, 216–20.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×