Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-08T14:05:08.641Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 April 2016

Josselin Garnier
Affiliation:
Université de Paris VII (Denis Diderot)
George Papanicolaou
Affiliation:
Stanford University, California
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

M., Abramowitz and I., Stegun, Handbook of Mathematical Functions (Dover Publications, New York, 1965)
D. G. Alfaro, Vigo, J.-P., Fouque, J., Garnier, and A., Nachbin, Robustness of time reversal for waves in time-dependent random media, Stochastic Process. Appl., 111 (2004), pp. 289–313Google Scholar
H., Ammari, E., Bonnetier, and Y., Capdeboscq, Enhanced resolution in structured media, SIAM J. Appl. Math., 70 (2009), pp. 1428–52Google Scholar
H., Ammari, J., Garnier, and W., Jing, Passive array correlation-based imaging in a random waveguide, SIAM Multiscale Model. Simul., 11 (2013), pp. 656–81Google Scholar
T., Anggono, T., Nishimura, H., Sato, H., Ueda, and M., Ukawa, Spatio-temporal changes in seismic velocity associated with the 2000 activity of Miyakejima volcano as inferred from cross-correlation analyses of ambient noise, Journal of Volcanology and Geothermal Research, 247–8 (2012), pp. 93–107Google Scholar
M., Asch, W., Kohler, G., Papanicolaou, M., Postel, and B., White, Frequency content of randomly scattered signals, SIAM Review, 33 (1991), pp. 519–626Google Scholar
M. M., Backus,Water reverberations – their nature and elimination, Geophysics, 24 (1959), pp. 233–61Google Scholar
A., Bakulin and R., Calvert, The virtual source method: Theory and case study, Geophysics, 71 (2006), pp. SI139–50Google Scholar
C., Bardos, J., Garnier, and G., Papanicolaou, Identification of Green's functions singularities by cross correlation of noisy signals, Inverse Problems, 24 (2008), 015011Google Scholar
G. D., Bensen, M. H., Ritzwoller, M. P., Barmin, A. L., Levshin, F., Lin, M. P., Moschetti, N. M., Shapiro, and Y., Yang, Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements, Geophys. J. Int., 169 (2007), pp. 1239–60Google Scholar
P., Bernard, Etude sur l'Agitation Microséismique et ses Variations, Presses Universitaires de France, Paris, 1941
J., Berryman, Stable iterative reconstruction algorithm for nonlinear travel time tomography, Inverse Problems, 6 (1990), pp. 21–42Google Scholar
G., Beylkin, M., Oristaglio, and D., Miller, Spatial resolution of migration algorithms. In Proceedings of 14th International Symposium on Acoustical Imaging, edited by A. J., Berkhout, J., Ridder, and L.F. van der, Walls (Plenum, New York, 1985), pp. 155–67Google Scholar
B. L., Biondi, 3D Seismic Imaging. Volume 14 in Investigations in Geophysics, Society of Exploration Geophysics (Tulsa, 2006)
D. T., Blackstock, Fundamentals of Physical Acoustics (Wiley, New York, 2000)
N., Bleisten and R., Handelsman, Asymptotic Expansions of Integrals (Dover, New York, 1986)
N., Bleistein, J. K., Cohen, and J.W., Stockwell Jr, Mathematics of Multidimensional Seismic Imaging, Migration, and Inversion (Springer Verlag, New York, 2001)
P., Blomgren, G., Papanicolaou, and H., Zhao, Super-resolution in time-reversal acoustics, J. Acoust. Soc. Amer., 111 (2002), pp. 230–48Google Scholar
L., Borcea, G., Papanicolaou, and C., Tsogka, Theory and applications of time reversal and interferometric imaging, Inverse Problems, 19 (2003), pp. S134–64Google Scholar
L., Borcea, G., Papanicolaou, and C., Tsogka, Interferometric array imaging in clutter, Inverse Problems, 21 (2005), pp. 1419–60Google Scholar
L., Borcea, G., Papanicolaou, and C., Tsogka, Adaptive interferometric imaging in clutter and optimal illumination, Inverse Problems, 22 (2006a), pp. 1405–36Google Scholar
L., Borcea, G., Papanicolaou, and C., Tsogka, Coherent interferometric imaging in clutter, Geophysics, 71 (2006b), pp. SI165–75Google Scholar
L., Borcea, G., Papanicolaou, and C., Tsogka, Optimal illumination and waveform design for imaging in random media, J. Acoust. Soc. Am., 122 (2007), pp. 3507–18Google Scholar
L., Borcea, F., Gonzalez del Cueto, G., Papanicolaou, and C., Tsogka, Filtering deterministic layering effects in imaging, SIAM Multiscale Model. Simul., 7 (2009), pp. 1267–1301Google Scholar
L., Borcea, T., Callaghan, J., Garnier, and G., Papanicolaou, A universal filter for enhanced imaging with small arrays, Inverse Problems, 26 (2010), 015006Google Scholar
L., Borcea, J., Garnier, G., Papanicolaou, and C., Tsogka, Enhanced statistical stability in coherent interferometric imaging, Inverse Problems, 27 (2011), 085004Google Scholar
L., Borcea, T., Callaghan, and G., Papanicolaou, Synthetic aperture radar imaging with motion estimation and autofocus, Inverse Problems, 28 (2012) 045006Google Scholar
M., Born and E., Wolf, Principles of Optics (Cambridge University Press, 1999)
L., Breiman, Probability (Addison-Wesley, Reading, 1968; reprinted by Society for Industrial and Applied Mathematics, Philadelphia, 1992)
F., Brenguier, N. M., Shapiro, M., Campillo, A., Nercessian, and V., Ferrazzini, 3D surface wave tomography of the Piton de la Fournaise volcano using seismic noise correlations, Geophys. Res. Lett., 34 (2007), L02305Google Scholar
F., Brenguier,M., Campillo, C., Hadziioannou, N. M., Shapiro, R.M., Nadeau, and E., Larose, Postseismic relaxation along the San Andreas fault at Parkfield from continuous seismological observations, Science, 321 (2008a), pp. 1478–81Google Scholar
F., Brenguier, N. M., Shapiro, M., Campillo, V., Ferrazzini, Z., Duputel, O., Coutant, and A., Nercessian, Towards forecasting volcanic eruptions using seismic noise, Nature Geoscience, 1 (2008b), pp. 126–30Google Scholar
F., Brenguier, M., Campillo, T., Takeda, Y., Aoki, N. M., Shapiro, X., Briand, K., Emoto, and H., Miyake, Mapping pressurized volcanic fluids from induced crustal seismic velocity drops, Science, 345 (2014), pp. 80–2Google Scholar
T., Callaghan, N., Czink, A., Paulraj, and G., Papanicolaou, Correlation-based radio localization in an indoor environment, EURASIP Journal on Wireless Communications and Networking, 2011 (2011), pp. 135:1–15Google Scholar
A. J., Calvert, Ray-tracing based prediction and subtraction of water-layer multiples, Geophysics, 55 (1990), pp. 443–51Google Scholar
M., Campillo and L., Stehly, Using coda waves extracted from microseisms to construct direct arrivals, Eos Trans. AGU, 88(52) (2007), Fall Meet. Suppl., Abstract S51D–07Google Scholar
A., Chai, M., Moscoso, and G., Papanicolaou, Imaging strong localized scatterers with sparsity promoting optimization, SIAM J. Imaging Sciences, 7 (2014), pp. 1358–87Google Scholar
J., Chen and G., Schuster, Resolution limits of migrated images, Geophysics, 64 (1999), pp. 1046–53Google Scholar
M., Cheney, A mathematical tutorial on synthetic aperture radar, SIAM Review, 43 (2001), pp. 301–12Google Scholar
J., Cheng, Ghost imaging through turbulent atmosphere, Opt. Express, 17 (2009), pp. 7916–17Google Scholar
J. F., Claerbout, Synthesis of a layered medium from its acoustic transmission response, Geophysics, 33 (1968), pp. 264–9Google Scholar
J. F., Claerbout, Imaging the Earth's Interior (Blackwell Scientific Publications, Palo Alto, 1985)
B., Clerckx and C., Oestges, MIMO Wireless Networks: Channels, Techniques and Standards for Multi-Antenna, Multi-User and Multi-Cell Systems (Academic Press, Oxford, 2013)
Y. Colin de, Verdière, Semiclassical analysis and passive imaging, Nonlinearity, 22 (2009), pp. R45–R75Google Scholar
R., Courant and D., Hilbert, Methods of Mathematical Physics (Wiley, New York, 1991)
P., Cupillard, L., Stehly, and B., Romanowicz, The one-bit noise correlation: a theory based on the concepts of coherent and incoherent noise, Geophys. J. Int., 184 (2011), pp. 1397–1414Google Scholar
A., Curtis and D., Halliday, Source–receiver wave field interferometry, Phys. Rev. E, 81 (2010), 046601Google Scholar
A., Curtis, P., Gerstoft, H., Sato, R., Snieder, and K., Wapenaar, Seismic interferometry – turning noise into signal, The Leading Edge, 25 (2006), pp. 1082–92Google Scholar
A., Curtis, H., Nicolson, D., Halliday, J., Trampert, and B., Baptie, Virtual seismometers in the subsurface of the Earth from seismic interferometry, Nature Geoscience, 2 (2009), pp. 700–4Google Scholar
D., Dawson and G., Papanicolaou, A random wave process, Appl. Math. Optim., 12 (1984), pp. 97–114Google Scholar
M. V. de, Hoop, J., Garnier, S. F., Holman, and K., Sølna, Scattering enabled retrieval of Green's functions from remotely incident wave packets using cross correlations, CRAS Geoscience, 343 (2011), pp. 526–32Google Scholar
M. V. de, Hoop, J., Garnier, S. F., Holman, and K., Sølna, Retrieval of a Green's function with reflections from partly coherent waves generated by a wave packet using cross correlationsSIAM J. Appl. Math., 73 (2013), pp. 493–522Google Scholar
M. de, Hoop and K., Sølna, Estimating a Green's function from field-field correlations in a random medium, SIAM J. Appl. Math., 69 (2009), pp. 909–32Google Scholar
S. A. L. de, Ridder, Passive Seismic Surface-Wave Interferometry for Reservoir Scale Imaging, PhD thesis (Stanford University, 2014); available at http://sepwww.stanford.edu /data/media/public/docs/sep151/title.pdf
A., Derode, P., Roux, and M., Fink, Robust acoustic time reversal with high-order multiple scattering, Phys. Rev. Lett., 75 (1995), pp. 4206–9Google Scholar
A., Derode, A., Tourin, and M., Fink, Ultrasonic pulse compression with one-bit time reversal through multiple scattering, J. Appl. Phys., 85 (1999), pp. 6343–52Google Scholar
A., Derode, E., Larose,M., Tanter, J. de, Rosny, A., Tourin,M., Campillo, and M., Fink, Recovering the Green's function from field–field correlations in an open scattering medium, J. Acoust. Soc. Am., 113 (2003), pp. 2973–6Google Scholar
D., Draganov, K., Wapenaar, and J., Thorbecke, Seismic interferometry: Reconstructing the earth's reflection response, Geophysics, 71 (2006), pp. S161–70Google Scholar
D., Draganov, K., Heller, and R., Ghose, Monitoring CO2 storage using ghost reflections retrieved from seismic interferometry, International Journal of Greenhouse Gas Control, 11S (2012), pp. S35–S46Google Scholar
D., Draganov, X., Campman, J., Thorbecke, A., Verdel, and K., Wapenaar, Seismic exploration-scale velocities and structure from ambient seismic noise (> 1 Hz)J. Geophys. Res.: Solid Earth, 118 (2013), pp. 4345–60Google Scholar
T. L., Duvall Jr, S. M., Jefferies, J. W., Harvey, and M. A., Pomerantz, Time-distance helioseismology, Nature, 362 (1993), pp. 430–2Google Scholar
W., Elmore and M., Heald, Physics of Waves (Dover, New York, 1969)
L., Erdös and H.-T., Yau, Linear Boltzmann equation as the weak coupling limit of the random Schrödinger equation, Comm. Pure Appl. Math., 53 (2000), pp. 667–735Google Scholar
L. C., Evans, Partial Differential Equations, 2nd edition (American Mathematical Society, Providence, 2010)
A., Farina and H., Kuschel, Guest editorial special issue on passive radar (Part I), IEEE Aerospace and Electronic Systems Magazine, 27 (2012), issue 10.Google Scholar
J. R., Fienup, Phase retrieval algorithms: a comparison, Appl. Opt., 21 (1982), pp. 2758–69Google Scholar
J. R., Fienup, Reconstruction of a complex-valued object from the modulus of its Fourier transform using a support constraint, J. Opt. Soc. Am. A, 4 (1987), pp. 118–23Google Scholar
J. R., Fienup and C. C., Wackerman, Phase-retrieval stagnation problems and solutions, J. Opt. Soc. Am. A, 3 (1986), pp. 1897–1907Google Scholar
M., Fink, Time reversed acoustics, Physics Today, 20 (1997), pp. 34–40Google Scholar
J.-P., Fouque, J., Garnier, G., Papanicolaou, and K., Sølna, Wave Propagation and Time Reversal in Randomly Layered Media (Springer, New York, 2007)
L. J., Fradkin, Limits of validity of geometrical optics in weakly irregular media, J. Opt. Soc. Am. A, 6 (1989), pp. 1315–19Google Scholar
U., Frisch, Wave propagation in random media. In Probabilistic Methods in Applied Mathematics, edited by A. T., Bharucha-Reid, Academic Press, New York (1968), pp. 75–198Google Scholar
J., Garnier, Imaging in randomly layered media by cross-correlating noisy signals, SIAM Multiscale Model. Simul., 4 (2005), pp. 610–40Google Scholar
J., Garnier and G., Papanicolaou, Pulse propagation and time reversal in random waveguides, SIAM J. Appl. Math., 67 (2007), pp. 1718–39Google Scholar
J., Garnier and G., Papanicolaou, Passive sensor imaging using cross correlations of noisy signals in a scattering medium, SIAM J. Imaging Sciences, 2 (2009), pp. 396–437Google Scholar
J., Garnier and G., Papanicolaou, Resolution analysis for imaging with noise, Inverse Problems, 26 (2010), 074001Google Scholar
J., Garnier and G., Papanicolaou, Fluctuation theory of ambient noise imaging, CRAS Geoscience, 343 (2011), pp. 502–11Google Scholar
J., Garnier and G., Papanicolaou, Correlation based virtual source imaging in strongly scattering media, Inverse Problems, 28 (2012), 075002Google Scholar
J., Garnier and G., Papanicolaou, Role of scattering in virtual source array imaging, SIAM J. Imaging Sciences, 7 (2014a), pp. 1210–36Google Scholar
J., Garnier and G., Papanicolaou, Resolution enhancement from scattering in passive sensor imaging with cross correlations, Inverse Problems and Imaging, 8 (2014b), pp. 645–83Google Scholar
J., Garnier, G., Papanicolaou, A., Semin, and C., Tsogka, Signal-to-noise ratio estimation in passive correlation-based imaging, SIAM J. Imaging Sciences, 6 (2013), pp. 1092–110Google Scholar
J., Garnier, G., Papanicolaou, A., Semin, and C., Tsogka, Signal to noise ratio analysis in virtual source array imaging, SIAM J. Imaging Sci., 8 (2015), pp. 248–79Google Scholar
J., Garnier and K., Sølna, Coupled paraxial wave equations in random media in the whitenoise regime, Ann. Appl. Probab., 19 (2009a), pp. 318–46Google Scholar
J., Garnier and K., Sølna, Background velocity estimation with cross correlations of incoherent waves in the parabolic scaling, Inverse Problems, 25 (2009b), 045005Google Scholar
J., Garnier and K., Sølna,Wave transmission through random layering with pressure release boundary conditions, SIAM Multiscale Model. Simul., 8 (2010a), pp. 912–43Google Scholar
J., Garnier and K., Sølna, Cross correlation and deconvolution of noise signals in randomly layered media, SIAM J. Imaging Sciences, 3 (2010b), pp. 809–34Google Scholar
J., Garnier and K., Sølna, Background velocity estimation by cross correlation of ambient noise signals in the radiative transport regime, Comm. Math. Sci., 3 (2011a), pp. 743–66Google Scholar
J., Garnier and K., Sølna, Filtered Kirchhoff migration of cross correlations of ambient noise signals, Inverse Problems and Imaging, 5 (2011b), pp. 371–90Google Scholar
I.I., Gihman and A. V., Skorohod, The Theory of Stochastic Processes, Vol. 1 (Springer-Verlag, Berlin, 1974)
O. A., Godin, Accuracy of the deterministic travel time retrieval from cross-correlations of non-diffuse ambient noise, J. Acoust. Soc. Am., 126 (2009), pp. EL183–9Google Scholar
G. H., Golub and C. F. van, Loan, Matrix Computations, 3rd ed. (Johns Hopkins University Press, Baltimore, 1996)
C., Gomez, Time-reversal superresolution in random waveguides, SIAM Multiscale Model. Simul., 7 (2009), pp. 1348–86Google Scholar
P., Gouédard, L., Stehly, F., Brenguier, M., Campillo, Y. Colin de, Verdière, E., Larose, L., Margerin, P., Roux, F. J., Sanchez-Sesma, N. M., Shapiro, and R. L., Weaver, Crosscorrelation of random fields: mathematical approach and applications, Geophysical Prospecting, 56 (2008), pp. 375–93Google Scholar
P., Gouédard, H., Yao, F., Ernst, and R. D. van der, Hilst, Surface-wave eikonal tomography for dense geophysical arrays, Geophys. J. Int., 191 (2012), pp. 781–8Google Scholar
N. D., Hardy and J. H., Shapiro, Reflective Ghost Imaging through turbulence, Phys. Rev. A, 84 (2011), 063824Google Scholar
P., Hariharan, Optical Holography (Cambridge University Press, 1996)
U., Harmankaya, A., Kaslilar, J., Thorbecke, K., Wapenaar, and D., Draganov, Locating near-surface scatterers using non-physical scattered waves resulting from seismic interferometry, Journal of Applied Geophysics, 91 (2013), pp. 66–81Google Scholar
A., Ishimaru, Wave Propagation and Scattering in Random Media (IEEE Press, Piscataway, 1997)
F. B., Jensen, W. A., Kuperman, M. B., Porter, and H., Schmidt, Computational Ocean Acoustics, Chapter 9 (Springer, New York, 2011)Google Scholar
A., Kaslilar, U., Harmankaya, K., Wapenaar, and D., Draganov, Estimating the location of a tunnel using correlation and inversion of Rayleigh wave scattering, Geophys. Res. Lett., 40 (2013), pp. 6084–8Google Scholar
A., Kaslilar, U., Harmankaya, K. van, Wijk, K., Wapenaar, and D., Draganov, Estimating location of scatterers using seismic interferometry of scattered Rayleigh waves, Near Surface Geophysics, 12 (2014), pp. 721–30Google Scholar
O., Katz, Y., Bromberg, and Y., Silberberg, Compressive ghost imaging, Appl. Phys. Lett., 95 (2009), 131110Google Scholar
J. B., Keller, R. M., Lewis, and B. D., Seckler, Asymptotic solution of some diffraction problems, Comm. Pure Appl. Math., 9 (1956), pp. 207–65Google Scholar
L. A., Konstantaki, D., Draganov, T., Heimovaara, and R., Ghose, Imaging scatterers in landfills using seismic interferometry, Geophysics, 78 (2013), pp. EN107–16Google Scholar
E., Larose, L., Margerin, A., Derode, B. Van, Tiggelen, M., Campillo, N., Shapiro, A., Paul, L., Stehly, and M., Tanter, Correlation of random wave fields: an interdisciplinary review, Geophysics, 71 (2006), pp. SI11–21Google Scholar
E., Larose, P., Roux, and M., Campillo, Reconstruction of Rayleigh–Lamb dispersion spectrum based on noise obtained from an air-jet forcing, J. Acoust. Soc. Am., 122 (2007), pp. 3437–44Google Scholar
T., Lecocq, C., Caudron, and F., Brenguier, MSNoise, a Python package for monitoring seismic velocity changes using ambient seismic noise, Seismo. Res. Letter, 85 (2014), pp. 715–26Google Scholar
G., Lerosey, J. de, Rosny, A., Tourin, and M., Fink, Focusing beyond the diffraction limit with far-field time reversal, Science, 315 (2007), pp. 1120–2Google Scholar
P. D., Letourneau, Fast Algorithms and Imaging in Strongly Scattering Media, PhD thesis, Stanford University, 2013; available at https://stacks.stanford.edu/file/druid :pf259md7940/Thesis-augmented.pdf
C., Li, T., Wang, J., Pu, W., Zhu, and R., Rao, Ghost imaging with partially coherent light radiation through turbulent atmosphere, Appl. Phys. B, 99 (2010), pp. 599–604Google Scholar
F.-C., Lin, M. H., Ritzwoller, and R., Snieder, Eikonal tomography: surface wave tomography by phase front tracking across a regional broad-band seismic array, Geophys. J. Int., 177 (2009), pp. 1091–110Google Scholar
Z., Liu, J., Huang, and J., Li, Comparison of four techniques for estimating temporal change of seismic velocity with passive image interferometry, Earthq. Sci., 23 (2010), pp. 511–8Google Scholar
O. I., Lobkis and R. L., Weaver, On the emergence of the Green's function in the correlations of a diffuse field, J. Acoustic. Soc. Am., 110 (2001), pp. 3011–17Google Scholar
M. S., Longuet-Higgins, A theory of the origin of microseisms, Phil. Trans. Roy. Soc. Series A, 243 (1950), pp. 1–35Google Scholar
A. E., Malcolm, J., Scales, and B. A. Van, Tiggelen, Extracting the Green function from diffuse, equipartitioned waves, Phys. Rev. E, 70 (2004), 015601Google Scholar
L., Mandel and E., Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, 1995)
P. A., Martin, Acoustic scattering by inhomogeneous obstacles, SIAM J. Appl. Math., 64 (2003), pp. 297–308Google Scholar
K., Mehta, A., Bakulin, J., Sheiman, R., Calvert, and R., Snieder, Improving the virtual source method by wavefield separation, Geophysics, 72 (2007), pp. V79–86Google Scholar
Y., Meyer, Wavelets and Operators (Cambridge University Press, 1992)
G., Papanicolaou, L., Ryzhik, and K., Sølna, Statistical stability in time reversal, SIAM J. Appl. Math., 64 (2004), pp. 1133–55Google Scholar
G., Papanicolaou, L., Ryzhik, and K., Sølna, Self-averaging from lateral diversity in the Ito–Schrödinger equation, SIAM Multiscale Model. Simul., 6 (2007), pp. 468–92Google Scholar
B., Perthame and L., Vega, Energy concentration and Sommerfeld condition for Helmholtz equation with variable index at infinity, Geom. Funct. Anal., 17 (2008), pp. 1685– 1707Google Scholar
J., Rickett and J., Claerbout, Acoustic daylight imaging via spectral factorization: Helioseismology and reservoir monitoring, The Leading Edge, 18 (1999), pp. 957–60Google Scholar
P., Roux and M., Fink, Green's function estimation using secondary sources in a shallow water environment, J. Acoust. Soc. Am., 113 (2003), pp. 1406–16Google Scholar
P., Roux, K. G., Sabra, W. A., Kuperman, and A., Roux, Ambient noise cross correlation in free space: Theoretical approach, J. Acoust. Soc. Am., 117 (2005), pp. 79–84Google Scholar
S. M., Rytov, Y. A., Kravtsov, and V. I., Tatarskii, Principles of Statistical Radiophysics. 4. Wave Propagation through Random Media (Springer-Verlag, Berlin, 1989)
L. V., Ryzhik, G. C., Papanicolaou, and J. B., Keller, Transport equations for elastic and other waves in random media, Wave Motion, 24 (1996), pp. 327–70Google Scholar
K. G., Sabra, P., Gerstoft, P., Roux, and W., Kuperman, Surface wave tomography from microseisms in Southern California, Geophys. Res. Lett., 32 (2005), L14311Google Scholar
K. G., Sabra, P., Roux, P., Gerstoft, W. A., Kuperman, and M. C., Fehler, Extracting coherent coda arrivals from cross correlations of long period seismic waves during the Mount St Helens 2004 eruption, Geophys. Res. Lett., 33 (2006), L06313Google Scholar
H., Sato and M., Fehler, Wave Propagation and Scattering in the Heterogeneous Earth (Springer-Verlag, New York, 1998)
G. T., Schuster, Seismic Interferometry (Cambridge University Press, 2009)
G. T., Schuster, J., Yu, J., Sheng, and J., Rickett, Interferometric daylight seismic imaging, Geophysical Journal International, 157 (2004), pp. 832–52Google Scholar
C., Sens-Schönfelder and U., Wegler, Passive image interferometry and seasonal variations of seismic velocities at Merapi volcano (Indonesia), Geophys. Res. Lett., 33 (2006), L21302Google Scholar
J. H., Shapiro, Computational ghost imaging, Phys. Rev. A, 78 (2008), 061802(R)Google Scholar
J. H., Shapiro and R. W., Boyd, The physics of ghost imaging, Quantum Inf. Process., 11 (2012), pp. 949–93Google Scholar
N. M., Shapiro, M., Campillo, L., Stehly, and M. H., Ritzwoller, High-resolution surface wave tomography from ambient noise, Science, 307 (2005), pp. 1615–18Google Scholar
P., Sheng, Introduction to Wave Scattering, Localization, and Mesoscopic Phenomena, 2nd edition (Springer-Verlag, Berlin, 2006)
R., Snieder, Extracting the Green's function from the correlation of coda waves: A derivation based on stationary phase, Phys. Rev. E, 69 (2004), 046610Google Scholar
R., Snieder, K., Wapenaar, and U., Wegler, Unified Green's function retrieval by crosscorrelation; connection with energy principles, Phys. Rev. E, 75 (2007), 036103Google Scholar
L., Stehly, M., Campillo, and N. M., Shapiro, A study of the seismic noise from its long-range correlation properties, Geophys. Res. Lett., 111 (2006), B1030Google Scholar
L., Stehly, M., Campillo, and N. M., Shapiro, Traveltime measurements from noise correlation: stability and detection of instrumental time-shifts, Geophys. J. Int., 171 (2007), pp. 223–30Google Scholar
L., Stehly, M., Campillo, B., Froment, and R., Weaver, Reconstructing Green's function by correlation of the coda of the correlation (C3) of ambient seismic noise, J. Geophys. Res., 113 (2008), B11306Google Scholar
W. W., Symes and J. J., Carazzone, Velocity inversion by differential semblance optimization, Geophysics, 56 (1991), pp. 654–63Google Scholar
F. D., Tappert, The parabolic approximation method. In Wave Propagation and Underwater Acoustics, Springer Lecture Notes in Physics, Vol. 70 (1977), pp. 224–87Google Scholar
V. I., Tatarski, Wave Propagation in a Turbulent Medium (Dover, New York, 1961)
B. J., Uscinski, The Elements of Wave Propagation in Random Media, (McGraw Hill, New York, 1977)
A., Valencia, G., Scarcelli, M., D'Angelo, and Y., Shih, Two-photon imaging with thermal light, Phys. Rev. Lett., 94 (2005), 063601Google Scholar
D.-J. van, Manen, A., Curtis, and J. O. A., Robertsson, Interferometric modeling of wave propagation in inhomogeneous elastic media using time reversal and reciprocity, Geophysics, 71 (2006), pp. SI47–60Google Scholar
M. C. W. van, Rossum and Th. M., Nieuwenhuizen, Multiple scattering of classical waves: microscopy, mesoscopy, and diffusion, Reviews of Modern Physics, 71 (1999), pp. 313–71Google Scholar
G. W., Walker, Modern Seismology (Longmans, Green and Co., London, 1913)
K., Wapenaar, Retrieving the elastodynamic Green's function of an arbitrary inhomogeneous medium by cross correlation, Phys. Rev. Lett., 93 (2004), 254301Google Scholar
K., Wapenaar and J., Fokkema, Green's function representations for seismic interferometry, Geophysics, 71 (2006), pp. SI33–46Google Scholar
K., Wapenaar, D., Draganov, R., Snieder, X., Campman, and A., Verdel, Tutorial on seismic interferometry: Part 1 – Basic principles and applications, Geophysics, 75 (2010a), pp. A195–A209Google Scholar
K., Wapenaar, E., Slob, R., Snieder, and A., Curtis, Tutorial on seismic interferometry: Part 2 – Underlying theory and new advances, Geophysics, 75 (2010b), pp. A211–27Google Scholar
R., Weaver and O. I., Lobkis, Ultrasonics without a source: Thermal fluctuation correlations at MHz frequencies, Phys. Rev. Lett., 87 (2001), 134301.Google Scholar
B., White, P., Sheng, and B., Nair, Localization and backscattering spectrum of seismic waves in stratified lithology, Geophysics, 55 (1990), pp. 1158–65Google Scholar
R., Wong, Asymptotic Approximations of Integrals (SIAM, Philadelphia, 2001)
H., Yao and R. van der, Hilst, Analysis of ambient noise energy distribution and phase velocity bias in ambient noise tomography, with application to SE Tibet, Geophys. J. Int., 179 (2009), pp. 1113–32Google Scholar
H., Yao, R. D. van der, Hilst, and M. V. de, Hoop, Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis I. Phase velocity maps, Geophysical Journal International, 166 (2006), pp. 732–44Google Scholar
P., Zhang, W., Gong, X., Shen, and S., Han, Correlated imaging through atmospheric turbulence, Phys. Rev. A, 82 (2010), 033817Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Josselin Garnier, Université de Paris VII (Denis Diderot), George Papanicolaou, Stanford University, California
  • Book: Passive Imaging with Ambient Noise
  • Online publication: 05 April 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781316471807.015
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Josselin Garnier, Université de Paris VII (Denis Diderot), George Papanicolaou, Stanford University, California
  • Book: Passive Imaging with Ambient Noise
  • Online publication: 05 April 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781316471807.015
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Josselin Garnier, Université de Paris VII (Denis Diderot), George Papanicolaou, Stanford University, California
  • Book: Passive Imaging with Ambient Noise
  • Online publication: 05 April 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781316471807.015
Available formats
×