The paradox
The lottery paradox is the most powerful of the consistency paradoxes, and the greatest threat to the traditional view of consistency. It draws us into a tangle of thorny issues in epistemology, in particular, issues concerning knowledge and justified belief. But the paradox itself is simple and elegant. It depends on one key philosophical premise, the principle of high probability, which can be stated as:
(HP) There is a number n (0.5 < n < 1) such that if P has probability n for S, then S is justified in believing P.
(HP) is motivated largely by the threat of scepticism. The moral many contemporary philosophers have drawn from the Cartesian exploration of the foundations of knowledge is that to insist on evidence that confers absolute certainty is to ensure, as an inevitable consequence, a thoroughgoing scepticism concerning the world around us. For any empirical belief admits of the possibility of error. (Although I believe I am now typing on a keyboard, for instance, it is possible, given my evidence, that I am merely a brain in a vat, being stimulated to have certain sensations.) If requiring certainty for justified belief is setting the bar too high, then it seems the only alternative is a retreat to high probability; and since a probability of 1 is associated with complete certainty, there must be some degree of probability less than 1 that is sufficient to warrant belief - which brings us to (HP).
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.