from Part V - Frobenius Structures
Published online by Cambridge University Press: 06 August 2022
In this part of the book, we bring together the streams of differential algebra (from Part III) and difference algebra (from Part IV), realizing Dwork’s fundamental insight that the study of differential modules on discs and annuli is greatly enhanced by the introduction of Frobenius structures. This chapter sets the foundations for this study. We first introduce the notion of a Frobenius structure on a differential module, with some examples. We then consider the effect of Frobenius structures on the generic radius of convergence, and obtain the fact that a differential module on a disc has a full basis of horizontal sections (“Dwork’s trick”). We also show that the existence of a Frobenius structure does not depend on the particular choice of a Frobenius lift; this independence plays an important role in rigid cohomology (Appendix B).
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.