Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-05T04:21:19.614Z Has data issue: false hasContentIssue false

2 - The Origin and Early Diversification of Squamates

from Part I - The Squamate and Snake Fossil Record

Published online by Cambridge University Press:  30 July 2022

David J. Gower
Affiliation:
Natural History Museum, London
Hussam Zaher
Affiliation:
Universidade de São Paulo
Get access

Summary

Squamata, the group that comprises lizards, snakes, and amphisbaenians, is the largest and most diverse major group of living reptiles. Although most recent estimates place their divergence from Rhynchocephalia in the early Triassic, the first unequivocal records of squamates currently date from the Middle Jurassic, and the first crown squamates, representing Scincoidea, Anguimorpha, and possibly Gekkota, are known from the Late Jurassic. The record then improves substantially in the Early Cretaceous, with squamate fossils recorded from most major continents and showing evidence of expansion into a diversity of specialist niches. Despite recent claims to the contrary, the earliest unequivocal snake fossils also date from this period, with fragmentary remains from the Aptian-Cenomanian of North Africa and North America, followed by a more substantial global record from the Cenomanian onwards. The re-interpretation of the Middle Jurassic to Early Cretaceous parviraptorids as snakes was based on a misinterpretation of the original material, as shown by new associated specimens from the Middle Jurassic of Scotland.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Vidal, N. and Hedges, S. B., The phylogeny of squamate reptiles (lizards, snakes, and amphisbaenians) inferred from nine nuclear protein-coding genes. Comptes Rendus Biologies, 328 (2005), 10001008.CrossRefGoogle ScholarPubMed
Camp, C. L., Classification of the lizards. Bulletin of the American Museum of Natural History, 48 (1923), 289481.Google Scholar
Estes, R., De Queiroz, K., and Gauthier, J., Phylogenetic relationships within Squamata. In Estes, R., and Pregill, G., eds., Essays Commemorating Charles L. Camp. Phylogenetic Relationships of the Lizard Families (Stanford, CA: Stanford University Press, 1988), pp. 119281.Google Scholar
Townsend, T. M., Larson, A., Louis, E., and Macey, J. R., Molecular phylogenetics of Squamata: the position of snakes, amphisbaenians, and dibamids, and the root of the squamate tree. Systematic Biology, 53 (2004), 735757.CrossRefGoogle ScholarPubMed
Vidal, N. and Hedges, S. B., Molecular evidence for a terrestrial origin of snakes. Proceedings of the Royal Society of London, series B: Biological Sciences, 271 (2004), suppl: S226S229.Google Scholar
Gauthier, J. A., Kearney, M., Maisano, J. A., Rieppel, O., and Behlke, A. D. B., Assembling the squamate tree of life: perspectives from the phenotype and the fossil record. Bulletin of the Peabody Museum of Natural History, 53 (2012), 3308.Google Scholar
Wiens, J. J., Hutter, C. R., Mulcahy, D. G., et al., Resolving the phylogeny of lizards and snakes (Squamata) with extensive sampling of genes and species. Biology Letters, 8 (2012), 10431046.Google Scholar
Pyron, R. A., Burbrink, F. T., and Wiens, J. J., A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evolutionary Biology, 13 (2013), 93.Google Scholar
Reeder, T. W., Townsend, T. M., Mulcahy, D. G., et al., Integrated analyses resolve conflicts over squamate reptile phylogeny and reveal unexpected placements for fossil taxa. PLoS ONE, 10 (2015), e0118199.Google Scholar
Zheng, Y. and Wiens, J. J., Combining phylogenomic and supermatrix approaches, and a time-calibrated phylogeny for squamate reptiles (lizards and snakes) based on 52 genes and 4162 species. Molecular Phylogenetics and Evolution, 94 (2016), 537547.CrossRefGoogle Scholar
Streicher, J. W. and Wiens, J. J., Phylogenomic analyses of more than 4000 nuclear loci resolve the origin of snakes among lizard families. Biology Letters, 13 (2017), 20170393.CrossRefGoogle ScholarPubMed
Pyron, R. A., Novel approaches for phylogenetic inference from morphological data and total-evidence dating in squamate reptiles (lizards, snakes, and amphisbaenians). Systematic Biology, 66 (2017), 3856.Google ScholarPubMed
Burbrink, F. T., Grazziotin, F. G., Pyron, R. A., et al., Interrogating genomic-scale data for Squamata (lizards, snakes, and amphisbaenians) shows no support for key traditional morphological relationships. Systematic Biology, 69 (2020), 502520.Google Scholar
Jones, M. E. H., Anderson, C. L., Hipsley, C. A., et al., Integration of molecules and new fossils supports a Triassic origin for Lepidosauria (lizards, snakes, and tuatara). BMC Evolutionary Biology, 13 (2013), 208.Google Scholar
Evans, S. E., At the feet of the dinosaurs: the origin, evolution and early diversification of squamate reptiles (Lepidosauria: Diapsida). Biological Reviews, 78 (2003), 513551.Google Scholar
Evans, S. E. and Jones, M. E. H., The origins, early history and diversification of lepidosauromorph reptiles. In Bandyopadhyay, S., ed., New Aspects of Mesozoic Biodiversity, Lecture Notes in Earth Sciences 132 (Berlin, Germany: Springer-Verlag, 2010), pp. 2744.Google Scholar
Datta, P. M. and Ray, S., Earliest lizard from the Late Triassic (Carnian) of India. Journal of Vertebrate Paleontology, 26 (2006), 795800.Google Scholar
Hutchinson, M. N., Skinner, A., and Lee, M. S. Y., Tikiguana and the antiquity of squamate reptiles (lizards and snakes). Biology Letters, 8 (2012), 665669.Google Scholar
Simões, T. R., Caldwell, M. W., Tałanda, M., et al., The origin of squamates revealed by a Middle Triassic ‘lizard’ from the Italian Alps. Nature, 557 (2018), 706709.Google Scholar
Evans, S. E. and Borsuk-Białynicka, M., A small lepidosauromorph reptile from the Early Triassic of Poland. Palaeontologica Polonica, 65 (2009), 179202.Google Scholar
Renesto, S. and Posenato, R., A new lepidosauromorph reptile from the Middle Triassic of the Dolomites (Northern Italy). Rivista Italiana di Paleontologia i Stratigrafia, 109 (2003), 463474.Google Scholar
Evans, S. E., A new lizard-like reptile (Diapsida: Lepidosauromorpha) from the Middle Jurassic of Oxfordshire. Zoological Journal of the Linnean Society, 103 (1991), 391412.Google Scholar
Griffiths, E. F., Ford, D. P., Benson, R. B. J., and Evans, S. E., New information on the Jurassic lepidosauromorph Marmoretta oxoniensis . Papers in Palaeontology, 7:4 (2021), 22552278 Google Scholar
Yadagiri, P., Lower Jurassic lower vertebrates from Kota Formation, Pranhita-Godavari valley, India. Journal of the Palaeontological Society of India, 31 (1986), 8996.Google Scholar
Evans, S. E., Prasad, G. V. R., and Manhas, B., Fossil lizards from the Jurassic Kota Formation of India. Journal of Vertebrate Paleontology, 22 (2002), 299312.CrossRefGoogle Scholar
Conrad, J. L., A new lizard (Squamata) was the last meal of Compsognathus (Theropoda: Dinosauria) and is a holotype in a holotype. Zoological Journal of the Linnean Society, 183 (2018), 584634.Google Scholar
Evans, S. E., A new anguimorph lizard from the Jurassic and Lower Cretaceous of England. Palaeontology, 37 (1994), 3349.Google Scholar
Evans, S. E., Crown group lizards from the Middle Jurassic of Britain. Palaeontographica, Abt.A 250 (1998), 123154.Google Scholar
Pancirioli, E., Benson, R. B. J., Walsh, S., et al., Diverse vertebrate assemblage of the Kilmaluag Formation (Bathonian, Middle Jurassic) of Skye, Scotland. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 111 (2020), 135–56.Google Scholar
Caldwell, M. W., Nydam, R. L., Palci, A., and Apesteguia, S., The oldest known snakes from the Middle Jurassic–Lower Cretaceous provide insights on snake evolution. Nature Communications, 6 (2015), 5996.Google Scholar
Fedorov, P. V. and Nessov, L. A., A lizard from the boundary of the Middle and Late Jurassic of north-east Fergana, Bulletin of St . Petersburg University, Geology and Geography, 3 (1992), 914 [In Russian].Google Scholar
Averianov, A., Martin, T., Skutschas, P. P., et al., Middle Jurassic vertebrate assemblages of Berezovsk coal mine in western Siberia, (Russia). Global Geology, 19 (2016), 187204.Google Scholar
Haddoumi, H., Allain, R., Meslouh, S., et al., Guelb el Ahmar (Bathonian, Anoual Syncline, eastern Morocco): first continental flora and fauna including mammals from the Middle Jurassic of Africa. Gondwana Research, 29 (2016), 290319.Google Scholar
Conrad, J. L., Wang, Y., Xu, X., Pyron, R. A., and Clark, J., Skeleton of a heavily armoured and long-legged Middle Jurassic lizard (Squamata, Reptilia). Journal of Vertebrate Paleontology Supplement, Annual Meeting Abstracts, 73 (2013), 108.Google Scholar
Evans, S. E. and Wang, Y., A juvenile lizard from the Late Jurassic/Early Cretaceous of China. Naturwissenschaften, 94 (2007), 431439.CrossRefGoogle Scholar
Evans, S. E. and Wang, Y., A long-limbed lizard from the Upper Jurassic/Lower Cretaceous of Daohugou, Inner Mongolia, China. Vertebrata Palasiatica, 47 (2009), 2134.Google Scholar
Dong, L. P., Wang, Y., Mou, L., Zhang, G., and Evans, S. E., A new Jurassic lizard from China. Geodiversitas, 41 (2019), 623641.Google Scholar
Seiffert, J., Upper Jurassic lizards from Central Portugal. Memoria, Serviços Geológicos de Portugal, 22 (1973), 185.Google Scholar
Hecht, M. K. and Hecht, B. M., A new lizard from Jurassic deposits of Middle Asia. Paleontological Journal, 18 (1984), 133136.Google Scholar
Prothero, D. R. and Estes, R., Late Jurassic lizards from Como Bluff Wyoming, and their palaeobiogeographic significance. Nature, 286 (1980), 484486.Google Scholar
Evans, S. E. and Chure, D. C., Paramacellodid lizard skulls from the Jurassic Morrison Formation at Dinosaur National Monument, Utah. Journal of Vertebrate Paleontology, 18 (1998), 99114.Google Scholar
Evans, S. E. and Chure, D. C., Morrison lizards: structure, relationships and biogeography. Modern Geology, 23 (1998), 3548.Google Scholar
Cocude-Michel, M., Les rhynchocéphales et les Sauriens des Calcaires Lithographiques (Jurassique supérieur) d’Europe Occidentale. Nouvelles Archives du Muséum d’Histoire naturelle de Lyon, 7 (1963), 1187.Google Scholar
Hoffstetter, R., Les Sauria du Jurassic supérieur et specialement les Gekkota de Bavière et de Mandchourie. Senckenbergiana Biologie, 45 (1964), 281322.Google Scholar
Mateer, N. J., Osteology of the Jurassic lizard Ardeosaurus brevipes (Meyer). Palaeontology, 25 (1982), 461–9.Google Scholar
Evans, S. E., The Solnhofen (Jurassic: Tithonian) lizard genus Bavarisaurus: new skull material and a reinterpretation. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 192 (1994), 3752.Google Scholar
Simões, T. R., Caldwell, M. W., Nydam, R. L., and Jiminez-Huidabro, P., Osteology, phylogeny, and functional morphology of two Jurassic lizard species and the early evolution of scansoriality in geckoes. Zoological Journal of the Linnean Society, 180 (2017), 216241.Google Scholar
Talanda, M., An exceptionally preserved Jurassic skink suggests lizard diversification preceded the fragmentation of Pangaea. Palaeontology, 61 (2018), 659677.Google Scholar
Evans, S. E., A re-evaluation of the late Jurassic (Kimmeridgian) reptile Euposaurus (Reptilia: Lepidosauria) from Cerin, France. Geobios, 27 (1994), 621631.Google Scholar
Zils, W., Werner, C., Moritz, A., and Saanane, C., Tendaguru, the most famous dinosaur locality of Africa. Review, survey and future prospects. Documenta naturae, Munich, 97 (1995), 141.Google Scholar
Li, P. P., Gao, K. Q., Hou, L. H., and Xu, X., A gliding lizard from the Early Cretaceous of China. Proceedings of the National Academy of Sciences of the U.S.A., 104 (2007), 55075509.CrossRefGoogle ScholarPubMed
Evans, S. E., Manabe, M., Noro, M., Isaji, S., and Yamaguchi, M., A long-bodied lizard from the Lower Cretaceous of Japan. Palaeontology, 49(6) (2006), 11431165.Google Scholar
Wang, Y. and Evans, S. E., A gravid lizard from the Early Cretaceous of China: insights into the history of squamate viviparity. Naturwissenschaften, 98 (2011), 739743.Google Scholar
Evans, S. E. and Manabe, M., A herbivorous lizard from the Early Cretaceous of Japan. Palaeontology, 51 (2008), 487498.Google Scholar
Evans, S. E. and Barbadillo, L. J., An unusual lizard (Reptilia, Squamata) from the Early Cretaceous of Las Hoyas, Spain. Zoological Journal of the Linnean Society, 124 (1998), 235266.Google Scholar
Arnold, E. N. and Poinar, G., A 100 million year old gecko with sophisticated adhesive toepads preserved in amber from Myanmar. Zootaxa, 1847 (2008), 6268.Google Scholar
Evans, S. E., Lacasa-Ruiz, A., and Erill Rey, J., A lizard from the Early Cretaceous (Berriasian-Hauterivian) of Montsec. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 215 (1999), 115.Google Scholar
Evans, S. E., Raia, P., and Barbera, C., New lizards and rhynchocephalians from the Early Cretaceous of southern Italy. Acta Palaeontologica Polonica, 49 (3) (2004), 393408.Google Scholar
Conrad, J. L., Phylogeny and systematic of Squamata (Reptilia) based on morphology. Bulletin of the American Museum of Natural History, 310 (2008), 1182.Google Scholar
Alifanov, V. R., The oldest gecko (Lacertilia: Gekkonidae) from the Lower Cretaceous of Mongolia. Paleontological Journal, 23 (1990), 128131.Google Scholar
Daza, J. D., Bauer, A. M., and Snively, E. D., On the fossil record of Gekkota. Anatomical Record, 297 (2014), 433462.Google Scholar
Conrad, J. L. and Norell, M. A., High-resolution X-ray computed tomography of an early Cretaceous gekkonomorph (Squamata) from Öösh (Övörkhangai: Mongolia). Historical Biology, 18 (2006), 405431.Google Scholar
Conrad, J. L. and Daza, J. D., Naming and re-diagnosing the Cretaceous gekkonomorph (Reptilia, Squamata) from Öösh (Övörkhangai, Mongolia). Journal of Vertebrate Paleontology, 35 (2015), e980891.Google Scholar
Daza, J. D., Stanley, E. L., Wagner, P., Bauer, A., and Grimaldi, D. A., Mid-Cretaceous amber fossils illuminate the past diversity of tropical lizards. Science Advances, 2 (2016), e1501080.Google Scholar
Fontanarrosa, G., Daza, J. D., and Abdala, V., Cretaceous fossil gecko hand reveals a strikingly modern scansorial morphology: qualitative and biometric analysis of an amber-preserved lizard hand. Cretaceous Research, 84 (2018), 120133.Google Scholar
Greer, A. E., The relationships of the lizard genera Anelytropsis and Dibamus. Journal of Herpetology, 19 (1985), 116156.Google Scholar
Cernansky, A., The first potential fossil record of a dibamid reptile (Squamata; Dibamidae): a new taxon from the early Oligocene of Central Mongolia. Zoological Journal of the Linnean Society, 187 (2019), 782799.Google Scholar
Estes, R. and Sauria, Amphisbaenia. Handbuch der Paläoherpetologie/Encyclopedia of Paleontology, Part 10A (Stuttgart: Gustav Fischer, 1983).Google Scholar
Kosma, R., The dentitions of recent and fossil scincomorphan lizards (Lacertilia, Squamata). Systematics, functional morphology, palaeoecology. Unpublished PhD Thesis, University of Hannover (2004).Google Scholar
Broschinski, A. and Sigogneau‑Russell, D., Remarkable lizard remains from the lower Cretaceous of Anoual (Morocco). Annales de Paléontologie (Vert.‑Invert.), 82 (1996), 147175.Google Scholar
Broschinski, A., The lizards from the Guimarota mine. In Martin, T. and Krebs, B., eds., Guimarota. A Jurassic Ecosystem (Munich: Dr. Friedrich Pfeil, 2000), pp. 5968.Google Scholar
Hoffstetter, R., Coup d’oeil sur les Sauriens (Lacertiliens) des couches de Purbeck (Jurassique Supérieur d’Angleterre). Problemes Actuels de Paleontologie (Evolution des Vertebrates), Colloques Internationaux du Centre National de la Recherche Scientifique, 163 (1967), 349371.Google Scholar
Li, J.-L., A new lizard from the late Jurassic of Subei, Gansu. Vertebrata PalAsiatica, 23 (1985), 1318.Google Scholar
Averianov, A. O. and Skutchas, P. P., Paramacellodid lizard (Squamata, Scincomorpha) from the Early Cretaceous of Transbaikalia. Russian Journal of Herpetology, 6 (1999), 115117.Google Scholar
Richter, A., Lacertilia aus der Unteren Kreide von Uña und Galve (Spanien) und Anoual (Marokko). Berliner geowissenschaftliche Abhandlungen, 14 (1994), 1147.Google Scholar
Nydam, R. L. and Cifelli, R. L., Lizards from the Lower Cretaceous (Aptian-Albian) Antlers and Cloverley Formations. Journal of Vertebrate Paleontology, 22 (2002), 286298.Google Scholar
Bittencourt, J. S., Simões, T. R., Caldwell, M. W., and Langer, M. C., Discovery of the oldest South American fossil lizard illustrates the cosmopolitanism of early South American squamates. Communications Biology, 3 (2020), 201.Google Scholar
Reynoso, V. H. and Callison, G., A new scincomorph lizard from the Early Cretaceous of Puebla, Mexico. Zoological Journal of the Linnean Society, 130 (2000), 183212.Google Scholar
Simões, T. R., Wilner, E., Caldwell, M. W., Weinschutz, L. C., and Kellner, A. W. A., A stem-acrodontan lizard in the Cretaceous of Brazil revises early lizard evolution in Gondwana. Nature Communications, 6 (2015), 9149.Google Scholar
Evans, S. E., Jones, M. E. H., and Matsumoto, R., A new lizard skull from the Purbeck Limestone Group of England. Bulletin of the Geological Society of France, 183 (2012), 517524.Google Scholar
Evans, S. E. and Barbadillo, L. J., Early Cretaceous lizards from las Hoyas, Spain. Zoological Journal of the Linnean Society, 119 (1997), 2349.Google Scholar
Richter, A., Der problematische Lacertilier Ilerdaesaurus (Reptilia: Squamata) aus der Unter-Kreide von Uña und Galve. Berliner geowissenschaftliche Abhandlungen, 13 (1994), 135161.Google Scholar
Bonfim-Junior, F. C. and Marques, R. B., Um novo lagarto do Cretáceo do Brasil (Lepidosauria, Squamata, Lacertilia – formação Santana, Aptiano da Bacia do Araripe). Anuario do Instituto de Geociencias, 20 (1997), 233240.Google Scholar
Bonfim-Junior, F. C. and Avila, L. D. S., Phylogenetic position of Tijubina pontei Bonfim and Marques 1997 (Lepidosauria, Squamata), a basal lizard from the Santana Formation, Lower Cretaceous of Brazil. Journal of Vertebrate Paleontology, 22 (Supplement to 3) (2002), 37A38A.Google Scholar
Simões, T. R., Redescription of Tijubina pontei, and Early Cretaceous lizard (Reptilia; Squamata) from the Crato Formation of Brazil. Anais da Academia Brasileira de Ciencias, 84 (2012), 1.Google Scholar
Evans, S. E. and Yabumoto, Y., A lizard from the Early Cretaceous Crato Formation, Araripe Basin, Brazil. Neues Jahrbuch für Paläontologie und Geologie, Monatshefte 1998 (1998), 349364.Google Scholar
Alifanov, V. R., New lizards of the Macrocephalosauridae (Sauria) from the Upper Cretaceous of Mongolia, critical remarks on the systematics of the Teiidae (sensu Estes, 1983). Paleontological Journal, 27 (1993), 7090.Google Scholar
Nydam, R. L., Eaton, J. G., and Sankey, J., New taxa of transversely-toothed lizards (Squamata; Scincomorpha) and new information on the evolutionary history of ‘teiids’. Journal of Paleontology, 81 (2007), 538549.Google Scholar
Evans, S. E. and Matsumoto, R., An assemblage of lizards from the Early Cretaceous of Japan. Palaeontologica Electronica, 18.2.36A (2015), 136.Google Scholar
Sullivan, R. M., A new middle Paleocene (Torrejonian) rhineurid amphisbaenian, Plesiorhineura tsentasi new genus, new species, from the San Juan Basin, New Mexico. Journal of Paleontology, 59 (1985), 14811485.Google Scholar
Nessov, L. A., Rare bony fishes, terrestrial lizards and mammals from the lagoonal zone of the litoral lowlands of the Cretaceous of the Kyzylkumy. Yearbook of the All-Union Palaeontological Society, Leningrad, 28 (1985), 199219.Google Scholar
Alifanov, V. R., Lizards of the family Hodzhakuliidae (Scincomorpha) from the Lower Cretaceous of Mongolia. Paleontological Journal, 50 (2016), 504513.Google Scholar
Wu, X.-C., Brinkman, D. B., and Russell, A. P., Sineoamphisbaena hexatabularis: an amphisbaenian (Diapsida: Squamata) from the Upper Cretaceous redbeds at Bayan Mandahu (Inner Mongolia, People’s Republic of China), and comments on the phylogenetic relationships of the Amphisbaenia. Canadian Journal of Earth Sciences, 33 (1996), 541577.CrossRefGoogle Scholar
Talanda, M., Cretaceous roots of the amphisbaenian lizards. Zoologica Scripta, 45 (2015), 18.Google Scholar
Alifanov, V. R., Lizards of the families Eoxantidae, Ardeosauridae, Globauridae, and Paramacellodidae (Scincomorpha) from the Aptian-Albian of Mongolia. Paleontological Journal, 53 (2019), 7488.Google Scholar
Alifanov, V. R., Lizards of the families Dorsetisauridae and Xenosauridae (Anguimorpha) from the Aptian–Albian of Mongolia. Paleontological Journal, 53 (2019), 183193.Google Scholar
O’Connor, J. M., Zheng, X., Dong, L., et al., Microraptor with ingested lizard suggests non-specialized digestive function. Current Biology, 29 (2019), 24232429.CrossRefGoogle ScholarPubMed
Gao, K. Q. and Nessov, L. A., Early Cretaceous squamates from the Kyzylkum Desert, Uzbekistan. Neues Jahrbüch für Geologie und Paläontologie, Abhandlungen, 207 (1998), 289309.Google Scholar
Fernandez, V., Buffetaut, E., Suteethorn, V., et al., Evidence of egg diversity in squamate evolution from Cretaceous anguimorph embryos. PLoS ONE, 10 (2015), e0128610.Google Scholar
Evans, S. E. and Wang, Y., The Early Cretaceous lizard Dalinghosaurus from China. Acta Palaeontologica Polonica, 50 (2005), 725–742.Google Scholar
Cifelli, R. L. and Nydam, R. L., Primitive, helodermatid-like platynotan from the Early Cretaceous of Utah. Herpetologica, 51 (1995), 286291.Google Scholar
Nydam, R. L., A new taxon of helodermatid-like lizard from the Albian-Cenomanian of Utah. Journal of Vertebrate Paleontology, 20 (2000), 285294.Google Scholar
Sweetman, S. C. and Evans, S. E., Lepidosaurs (lizards). In Batten, D. J., ed., Palaeontological Association Field Guide to Fossils, 14 . English Wealden Fossils (London: The Palaeontological Association, 2011), pp. 264284.Google Scholar
Houssaye, A., Rage, J.-C., Fernandez-Baldor, F. T., et al., A new varanoid squamate from the Early Cretaceous (Barremian-Aptian) of Burgos, Spain. Cretaceous Research, 41 (2013), 127135.Google Scholar
Daza, J. D., Bauer, A. M., Stanley, E. L., et al., An enigmatic miniaturized and attenuate whole lizard from the mid-Cretaceous amber of Myanmar. Breviora, 563 (2018), 118.Google Scholar
Evans, S. E. and Barbadillo, L. J., A short-limbed lizard from the Lower Cretaceous of Spain. Special Papers in Palaeontology, 60 (1999), 7385.Google Scholar
Reynoso, V. H., Huehuecuetzpalli mixtecus gen. et sp. nov.: a basal squamate (Reptilia) from the early Cretaceous of Tepexi de Rodriguez, Central Mexico. Philosophical Transactions of the Royal Society of London , Biological Sciences, 353 (1998), 477500.Google Scholar
Matsumoto, R. and Evans, S. E., The first record of albanerpetontid amphibians (Amphibia, Albanerpetontidae) from East Asia. PLoS ONE, 13 (2018), e0189767.Google Scholar
Apesteguia, S., Daza, J. D., Simões, T. R., and Rage, J.-C., The first iguanian lizard from the Mesozoic of Africa. Royal Society Open Science, 3 (2016), 160462.Google Scholar
McDowell, S. B. and Bogert, C. M., The systematic position of Lanthanotus and the affinities of the anguinomorphan lizards. Bulletin of the American Museum of Natural History, 105 (1954), 1142.Google Scholar
Carroll, R. L. and De Braga, M., Aigialosaurus: mid-Cretaceous varanoid lizards. Journal of Vertebrate Paleontology, 12 (1992), 6686.Google Scholar
Caldwell, M. W., Carroll, R. L., and Kaiser, H., The pectoral girdle and forelimb of Carsosaurus marchesetti (Aigialosauridae) with a preliminary phylogenetic analysis of mosasauroids and varanoids. Journal of Vertebrate Paleontology, 15 (1995), 516531.Google Scholar
Caldwell, M. W., Squamate phylogeny and the relationships of snakes and mosasauroids. Zoological Journal of the Linnean Society, 125 (1999), 115147.Google Scholar
Simões, T. R., Vernygora, O., Paparella, I., Jimenez-Huidobro, P., and Caldwell, M. W., Mosasauroid phylogeny under multiple phylogenetic methods provides new insights on the evolution of aquatic adaptations in the group. PLoS ONE 12 (2017), e0176773.Google Scholar
Lee, M. S. Y., The phylogeny of varanoid lizards and the affinities of snakes. Philosophical Transactions of the Royal Society, Biological Sciences, 352 (1997), 5391.Google Scholar
Lee, M. S. Y., Convergent evolution and character correlation in burrowing reptiles: towards a resolution of squamate phylogeny. Biological Journal of the Linnean Society, 65 (1998), 369453.CrossRefGoogle Scholar
Lee, M. S. Y. and Caldwell, M. W., Adriosaurus and the affinities of mosasaurs, dolichosaurs, and snakes. Journal of Paleontology, 74 (2000), 915–37.Google Scholar
Cope, E. D., On the reptilian orders, Pythonomorpha and Streptosauria. Proceedings of the Boston Society of Natural History, 12 (1869), 250–66.Google Scholar
Lee, M. S. Y., Molecular evidence and marine snake origins. Biology Letters, 1 (2005), 227230.Google Scholar
Caldwell, M. W., On the aquatic squamate Dolichosaurus longicollis Owen, 1850 (Cenomanian, Upper Cretaceous), and the evolution of elongate necks in squamates. Journal of Vertebrate Paleontology, 20 (2000), 720735.Google Scholar
Dutchak, A. R., A review of the taxonomy and systematics of aigialosaurs. Netherlands Journal of Geosciences, 84 (2005), 221229.CrossRefGoogle Scholar
Mekarski, M. C., Pierce, S. E., and Caldwell, M. W., Spatiotemporal distributions of non-ophidian ophidiomorphs, with implications for their origin, radiation, and extinction. Frontiers in Earth Science, 7 (2019), article 24.Google Scholar
Paparella, M., Palci, A., Nicosia, U., and Caldwell, M. W., A new fossil marine lizard with soft tissues from the Late Cretaceous of southern Italy. Royal Society Open Science, 5 (2018), e172411.Google Scholar
Pierce, S. E. and Caldwell, M. W., Redescription and phylogenetic position of the Adriatic (Upper Cretaceous; Cenomanian) dolichosaur Pontosaurus lesinensis (Kornhuber, 1873). Journal of Vertebrate Paleontology, 24 (2004), 373386.Google Scholar
Palci, A. and Caldwell, M. W., Redescription of Acteosaurus tommasinii Von Meyer 1860, and a discussion of evolutionary trends within the clade Ophiodiomorpha. Journal of Vertebrate Paleontology, 30 (2010), 94108.Google Scholar
Rage, J.-C. and Richter, A., A snake from the lower Cretaceous (Barremian) of Spain: the oldest known snake. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 1995 (1995), 561565.Google Scholar
Scanlon, J. D. and Hocknull, S. A., A dolichosaurid lizard from the latest Albian (mid-Cretaceous) Winto Formation, Queensland, Australia. In Everhard, M. J., ed., Proceedings of the Second Mosasaur Meeting, Fort Hays Studies Special Issue, 3 (2008), 131136.Google Scholar
Martill, D. M., Tischlinger, H., and Longrich, N. R., A four-legged snake form the Early Cretaceous of Gondwana. Science, 349 (2015), 416419.CrossRefGoogle Scholar
Lee, M. S. Y., Squamate phylogeny, taxon sampling, and data congruence. Organisms, Diversity, and Evolution, 5 (2005), 2545.Google Scholar
Simões, T. R., Caldwell, M. W., and Kellner, A. W. A., A new Early Cretaceous lizard species from Brazil, and the phylogenetic position of the oldest known South American squamates. Journal of Systematic Palaeontology, 13 (2015), 601614.Google Scholar
Mulcahy, D. G., Noonan, B. P., Moss, T., et al., Estimating divergence dates and evaluating dating methods using phylogenomic and mitochondrial data in squamate reptiles. Molecular Phylogenetics and Evolution, 65 (2012), 974991.Google Scholar
Lee, M. S. Y., Hidden support from unpromising data sets strongly unites snakes with anguimorph ‘lizards’. Journal of Evolutionary Biology, 22 (2009), 13081316.Google Scholar
Hoffstetter, R., Un serpent terrestre dans le Crétacé inférieur du Sahara. Bulletin de la Société Géologique de France, 1 (1959), 897902.Google Scholar
Cuny, G., Jaeger, J. J., Mahboubi, M., and Rage, J.-C., Les plus anciens serpentes (Reptilia, Squamata) connus. Mise au point sur l’age géologiques des Serpents de la partie moyenne du Crétacé. Comptes rendus des séances de l’Académie des Sciences Paris , Series 2, 311 (1990), 12671272.Google Scholar
Rage, J.-C. and Escuillié, F., The Cenomanian: stage of hind-limbed snakes. Notebooks on Geology, (1) (2003), (CG2003 A01 JCR-FE).Google Scholar
Gardner, J. D. and Cifelli, R. L., A primitive snake from the Cretaceous of Utah. Special Papers in Palaeontology, 60 (1999), 87100.Google Scholar
Rage, J.-C. and Dutheil, D. B., Amphibians and squamates from the Cretaceous (Cenomanian) of Morocco. A preliminary study. Palaeontographica Abteilung A, 286 (2008), 122.Google Scholar
Lee, M. S. Y., Caldwell, M. W., and Scanlon, J. D., A second primitive marine snake: Pachyophis woodwoodi from the Cretaceous of Bosnia-Herzgovina. Journal of Zoology, 248 (1999), 509520.Google Scholar
Haas, G., On a new snake-like reptile from the lower Cenomanian of Ein Jabrud, near Jerusalem. Bulletin du Muséum National d’Histoire Naturelle de Paris, 1 (1979), 5164.Google Scholar
Caldwell, M. W. and Lee, M. S. Y., A snake with legs from the marine Cretaceous of the Middle East. Nature, 386 (1997), 705709.Google Scholar
Zaher, H., The phylogenetic position of Pachyrachis within snakes (Squamata, Lepidosauria). Journal of Vertebrate Paleontology, 18 (1998), 13.Google Scholar
Zaher, H. and Rieppel, O., The phylogenetic relationships of Pachyrachis problematicus and the evolution of limblessness in snakes (Lepidosauria, Squamata). Comptes Rendus de l’Academie de Sciences, Series IIA – Earth and Planetary Science, 329 (1999), 831837.Google Scholar
Rage, J.-C. and Escuillié, F., Un nouveau serpent bipède du Cénomanien (Crétacé). Implications phylétiques. Comptes Rendus de l’Academie des Sciences, Series IIA - Earth and Planetary Science, 330 (2000), 513520.Google Scholar
Tchernov, E., Rieppel, O., Zaher, H., Polcyn, M. J., and Jacobs, L. L., A fossil snake with limbs. Science, 287 (2000), 20102012.Google Scholar
Albino, A., Carillo-Briceno, J. D., and Neenan, J. M., An enigmatic aquatic snake from the Cenomanian of northern South America. PeerJ, 4 (2016), DOI 10.7717/peerj.2027 e2027.Google Scholar
Rage, J.-C., Un serpent primitif (Reptilia, Squamata) dans le Cénomanien (base du Crétacé supérieur). Comptes rendus de l’Academie des Sciences, Paris, 307 (1988), 10271032.Google Scholar
Xing, L., Caldwell, M. W., Chen, R., et al., A mid-Cretaceous embryonic-to-neonate snake in amber from Myanmar. Science Advances, 4 (2018), eaat5042.CrossRefGoogle ScholarPubMed
Apesteguía, S. and Zaher, H., A Cretaceous terrestrial limbed snake with robust hindlimbs and sacrum, Nature, 440 (2006), 10371040.CrossRefGoogle ScholarPubMed
Garberoglio, F. F., Apesteguia, S., Simões, T. R., et al., New skulls and skeletons of the Cretaceous legged snake Najash, and the evolution of the modern snake body plan. Science Advances, 5 (2019), eaax5833.CrossRefGoogle ScholarPubMed
Hsiou, A. S., Albino, A. M., Medeiros, M. A., and Santos, R. A. B., The oldest Brazilian snakes from the Cenomanian (early Late Cretaceous). Acta Palaeontologica Polonica, 59 (2013), 635642.Google Scholar
Klein, C. G., Longrich, N. R., Ibrahim, N., Zouhri, S., and Martill, D. M., A new basal snake from the mid-Cretaceous of Morocco. Cretaceous Research, 72 (2017), 134141.Google Scholar
Harrington, S. M. and Reeder, T. W., Phylogenetic inference and divergence dating of snakes using molecules, morphology and fossils: new insights into convergent evolution of feeding morphology and limb reduction. Biological Journal of the Linnean Society, 121(2017), 379394.Google Scholar
Da Silva, F. O., Fabre, A.-C., Savriama, Y., et al., The ecological origins of snakes as revealed by skull evolution. Nature Communications, 9 (2018), 376.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×