Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-20T06:23:49.778Z Has data issue: false hasContentIssue false

21 - Using Optogenetics and Stem Cell-derived Neural Engraftment Techniques to Restore Lost Motor Function

from Part IV - Optogenetics in Learning, Neuropsychiatric Diseases, and Behavior

Published online by Cambridge University Press:  28 April 2017

Krishnarao Appasani
Affiliation:
GeneExpression Systems, Inc., Massachusetts
Get access
Type
Chapter
Information
Optogenetics
From Neuronal Function to Mapping and Disease Biology
, pp. 308 - 324
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alilain, W. J., Li, X., Horn, K. P., Dhingra, R., Dick, T. E., Herlitze, S. & Silver, J. 2008. Light-induced rescue of breathing after spinal cord injury. J Neurosci, 28, 1186211870.CrossRefGoogle ScholarPubMed
Amoroso, M. W., Croft, G. F., Williams, D. J., O’keeffe, S., Carrasco, M. A., Davis, A. R., Roybon, L., Oakley, D. H., Maniatis, T., Henderson, C. E. & Wichterle, H. 2013. Accelerated high-yield generation of limb-innervating motor neurons from human stem cells. J Neurosci, 33, 574586.CrossRefGoogle ScholarPubMed
Aravanis, A. M., Wang, L. P., Zhang, F., Meltzer, L. A., Mogri, M. Z., Schneider, M. B. & Deisseroth, K. 2007. An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. J Neural Eng, 4, S143S156.CrossRefGoogle ScholarPubMed
Arlow, R. L., Foutz, T. J. & Mcintyre, C. C. 2013. Theoretical principles underlying optical stimulation of myelinated axons expressing channelrhodopsin-2. Neuroscience, 248, 541551.CrossRefGoogle ScholarPubMed
Arthur-Farraj, P. J., Latouche, M., Wilton, D. K., Quintes, S., Chabrol, E., Banerjee, A., Woodhoo, A., Jenkins, B., Rahman, M., Turmaine, M., Wicher, G. K., Mitter, R., Greensmith, L., Behrens, A., Raivich, G., Mirsky, R. & Jessen, K. R. 2012. c-Jun reprograms Schwann cells of injured nerves to generate a repair cell essential for regeneration. Neuron, 75, 633647.CrossRefGoogle Scholar
Brownstone, R. M. & Bui, T. V. 2010. Spinal interneurons providing input to the final common path during locomotion. Prog Brain Res, 187, 8195.CrossRefGoogle Scholar
Bruegmann, T., Van Bremen, T., Vogt, C. C., Send, T., Fleischmann, B. K. & Sasse, P. 2015. Optogenetic control of contractile function in skeletal muscle. Nat Commun, 6, 7153.CrossRefGoogle ScholarPubMed
Bryson, J. B., Machado, C. B., Crossley, M., Stevenson, D., Bros-Facer, V., Burrone, J., Greensmith, L. & Lieberam, I. 2014. Optical control of muscle function by transplantation of stem cell-derived motor neurons in mice. Science, 344, 9497.CrossRefGoogle ScholarPubMed
Chambers, S. M., Fasano, C. A., Papapetrou, E. P., Tomishima, M., Sadelain, M. & Studer, L. 2009. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol, 27, 275280.CrossRefGoogle ScholarPubMed
Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P. D., Wu, X., Jiang, W., Marraffini, L. A. & Zhang, F. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science, 339, 819823.CrossRefGoogle ScholarPubMed
Darabid, H., Perez-Gonzalez, A. P. & Robitaille, R. 2014. Neuromuscular synaptogenesis: coordinating partners with multiple functions. Nat Rev Neurosci, 15, 703718.CrossRefGoogle ScholarPubMed
Di, P. W. C. & Di, P. S. G. C. 2015. Safety and efficacy of diaphragm pacing in patients with respiratory insufficiency due to amyotrophic lateral sclerosis (DiPALS): a multicentre, open-label, randomised controlled trial. Lancet Neurol, 14, 883892.Google Scholar
Ethier, C. & Miller, L. E. 2015. Brain-controlled muscle stimulation for the restoration of motor function. Neurobiol Dis, 83, 180190.CrossRefGoogle ScholarPubMed
Feldman, E. L., Boulis, N. M., Hur, J., Johe, K., Rutkove, S. B., Federici, T., Polak, M., Bordeau, J., Sakowski, S. A. & Glass, J. D. 2014. Intraspinal neural stem cell transplantation in amyotrophic lateral sclerosis: Phase 1 trial outcomes. Ann Neurol, 75, 363373.CrossRefGoogle ScholarPubMed
Filbin, M. T. 2003. Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS. Nat Rev Neurosci, 4, 703713.CrossRefGoogle ScholarPubMed
Gordon, T., Tyreman, N. & Raji, M. A. 2011. The basis for diminished functional recovery after delayed peripheral nerve repair. J Neurosci, 31, 5325–534.CrossRefGoogle ScholarPubMed
Hamada, T., Kimura, T. & Moritani, T. 2004. Selective fatigue of fast motor units after electrically elicited muscle contractions. J Electromyogr Kinesiol, 14, 531538.CrossRefGoogle Scholar
Harel, N. Y. & Strittmatter, S. M. 2006. Can regenerating axons recapitulate developmental guidance during recovery from spinal cord injury? Nat Rev Neurosci, 7, 603616.CrossRefGoogle ScholarPubMed
Harper, J. M., Krishnan, C., Darman, J. S., Deshpande, D. M., Peck, S., Shats, I., Backovic, S., Rothstein, J. D. & Kerr, D. A. 2004. Axonal growth of embryonic stem cell-derived motoneurons in vitro and in motoneuron-injured adult rats. Proc Natl Acad Sci U S A, 101, 71237128.CrossRefGoogle ScholarPubMed
Henneman, E. & Olson, C. B. 1965. Relations between structure and function in the design of skeletal muscles. J Neurophysiol, 28, 581598.CrossRefGoogle ScholarPubMed
Hochbaum, D. R., Zhao, Y., Farhi, S. L., Klapoetke, N., Werley, C. A., Kapoor, V., Zou, P., Kralj, J. M., Maclaurin, D., Smedemark-Margulies, N., Saulnier, J. L., Boulting, G. L., Straub, C., Cho, Y. K., Melkonian, M., Wong, G. K., Harrison, D. J., Murthy, V. N., Sabatini, B. L., Boyden, E. S., Campbell, R. E. & Cohen, A. E. 2014. All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins. Nat Methods, 11, 825833.CrossRefGoogle ScholarPubMed
Hockberger, P. E., Skimina, T. A., Centonze, V. E., Lavin, C., Chu, S., Dadras, S., Reddy, J. K. & White, J. G. 1999. Activation of flavin-containing oxidases underlies light-induced production of H2O2 in mammalian cells. Proc Natl Acad Sci U S A, 96, 62556260.CrossRefGoogle ScholarPubMed
Homer, M. L., Nurmikko, A. V., Donoghue, J. P. & Hochberg, L. R. 2013. Sensors and decoding for intracortical brain computer interfaces. Annu Rev Biomed Eng, 15, 383405.CrossRefGoogle ScholarPubMed
Iwai, Y., Honda, S., Ozeki, H., Hashimoto, M. & Hirase, H. 2011. A simple head-mountable LED device for chronic stimulation of optogenetic molecules in freely moving mice. Neurosci Res, 70, 124127.CrossRefGoogle Scholar
Iyer, S. M., Montgomery, K. L., Towne, C., Lee, S. Y., Ramakrishnan, C., Deisseroth, K. & Delp, S. L. 2014. Virally mediated optogenetic excitation and inhibition of pain in freely moving nontransgenic mice. Nat Biotechnol, 32, 274278.CrossRefGoogle ScholarPubMed
Jarosiewicz, B., Sarma, A. A., Bacher, D., Masse, N. Y., Simeral, J. D., Sorice, B., Oakley, E. M., Blabe, C., Pandarinath, C., Gilja, V., Cash, S. S., Eskandar, E. N., Friehs, G., Henderson, J. M., Shenoy, K. V., Donoghue, J. P. & Hochberg, L. R. 2015. Virtual typing by people with tetraplegia using a self-calibrating intracortical brain–computer interface. Sci Transl Med, 7, 313ra179.CrossRefGoogle ScholarPubMed
Ji, Z. G., Ishizuka, T. & Yawo, H. 2013. Channelrhodopsins – their potential in gene therapy for neurological disorders. Neurosci Res, 75, 612.CrossRefGoogle Scholar
Kang, H. & Lichtman, J. W. 2013. Motor axon regeneration and muscle reinnervation in young adult and aged animals. J Neurosci, 33, 1948019491.CrossRefGoogle ScholarPubMed
King, C. E., Wang, P. T., Mccrimmon, C. M., Chou, C. C., Do, A. H. & Nenadic, Z. 2015. The feasibility of a brain–computer interface functional electrical stimulation system for the restoration of overground walking after paraplegia. J Neuroeng Rehabil, 12, 80.CrossRefGoogle ScholarPubMed
Klapoetke, N. C., Murata, Y., Kim, S. S., Pulver, S. R., Birdsey-Benson, A., Cho, Y. K., Morimoto, T. K., Chuong, A. S., Carpenter, E. J., Tian, Z., Wang, J., Xie, Y., Yan, Z., Zhang, Y., Chow, B. Y., Surek, B., Melkonian, M., Jayaraman, V., Constantine-Paton, M., Wong, G. K. & Boyden, E. S. 2014. Independent optical excitation of distinct neural populations. Nat Methods, 11, 338346.CrossRefGoogle ScholarPubMed
Ladle, D. R., Pecho-Vrieseling, E. & Arber, S. 2007. Assembly of motor circuits in the spinal cord: driven to function by genetic and experience-dependent mechanisms. Neuron, 56, 270283.CrossRefGoogle ScholarPubMed
Lemon, R. N. 2008. Descending pathways in motor control. Annu Rev Neurosci, 31, 195218.CrossRefGoogle Scholar
Lin, J. Y., Knutsen, P. M., Muller, A., Kleinfeld, D. & Tsien, R. Y. 2013. ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nat Neurosci, 16, 14991508.CrossRefGoogle ScholarPubMed
Liske, H., Qian, X., Anikeeva, P., Deisseroth, K. & Delp, S. 2013. Optical control of neuronal excitation and inhibition using a single opsin protein, ChR2. Sci Rep, 3, 3110.CrossRefGoogle ScholarPubMed
Llewellyn, M. E., Thompson, K. R., Deisseroth, K. & Delp, S. L. 2010. Orderly recruitment of motor units under optical control in vivo. Nat Med, 16, 11611165.CrossRefGoogle ScholarPubMed
Magown, P., Shettar, B., Zhang, Y. & Rafuse, V. F. 2015. Direct optical activation of skeletal muscle fibres efficiently controls muscle contraction and attenuates denervation atrophy. Nat Commun, 6, 8506.CrossRefGoogle ScholarPubMed
Mali, P., Yang, L., Esvelt, K. M., Aach, J., Guell, M., Dicarlo, J. E., Norville, J. E. & Church, G. M. 2013. RNA-guided human genome engineering via Cas9. Science, 339, 823826.CrossRefGoogle ScholarPubMed
Maury, Y., Come, J., Piskorowski, R. A., Salah-Mohellibi, N., Chevaleyre, V., Peschanski, M., Martinat, C. & Nedelec, S. 2015. Combinatorial analysis of developmental cues efficiently converts human pluripotent stem cells into multiple neuronal subtypes. Nat Biotechnol, 33, 8996.CrossRefGoogle ScholarPubMed
Miyashita, T., Shao, Y. R., Chung, J., Pourzia, O. & Feldman, D. E. 2013. Long-term channelrhodopsin-2 (ChR2) expression can induce abnormal axonal morphology and targeting in cerebral cortex. Front Neural Circuits, 7, 8.Google ScholarPubMed
Montgomery, K. L., Yeh, A. J., Ho, J. S., Tsao, V., Mohan Iyer, S., Grosenick, L., Ferenczi, E. A., Tanabe, Y., Deisseroth, K., Delp, S. L. & Poon, A. S. 2015. Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice. Nat Methods, 12, 969974.CrossRefGoogle ScholarPubMed
Nicaise, C., Putatunda, R., Hala, T. J., Regan, K. A., Frank, D. M., Brion, J. P., Leroy, K., Pochet, R., Wright, M. C. & Lepore, A. C. 2012. Degeneration of phrenic motor neurons induces long-term diaphragm deficits following mid-cervical spinal contusion in mice. J Neurotrauma, 29, 27482760.CrossRefGoogle ScholarPubMed
Peters, O. M., Ghasemi, M. & Brown, R. H. Jr. 2015. Emerging mechanisms of molecular pathology in ALS. J Clin Invest, 125, 17671779.CrossRefGoogle Scholar
Suzuki, M., Mchugh, J., Tork, C., Shelley, B., Klein, S. M., Aebischer, P. & Svendsen, C. N. 2007. GDNF secreting human neural progenitor cells protect dying motor neurons, but not their projection to muscle, in a rat model of familial ALS. PLoS One, 2, e689.CrossRefGoogle ScholarPubMed
Thompson, L. H. & Bjorklund, A. 2015. Reconstruction of brain circuitry by neural transplants generated from pluripotent stem cells. Neurobiol Dis, 79, 2840.CrossRefGoogle ScholarPubMed
Thomsen, G. M., Gowing, G., Svendsen, S. & Svendsen, C. N. 2014. The past, present and future of stem cell clinical trials for ALS. Exp Neurol, 262(Pt B), 127137.CrossRefGoogle ScholarPubMed
Towne, C., Montgomery, K. L., Iyer, S. M., Deisseroth, K. & Delp, S. L. 2013. Optogenetic control of targeted peripheral axons in freely moving animals. PLoS One, 8, e72691.CrossRefGoogle Scholar
Weick, J. P., Johnson, M. A., Skroch, S. P., Williams, J. C., Deisseroth, K. & Zhang, S. C. 2010. Functional control of transplantable human ESC-derived neurons via optogenetic targeting. Stem Cells, 28, 20082016.CrossRefGoogle ScholarPubMed
Wentz, C. T., Bernstein, J. G., Monahan, P., Guerra, A., Rodriguez, A. & Boyden, E. S. 2011. A wirelessly powered and controlled device for optical neural control of freely-behaving animals. J Neural Eng, 8, 046021.CrossRefGoogle ScholarPubMed
Wichterle, H., Lieberam, I., Porter, J. A. & Jessell, T. M. 2002. Directed differentiation of embryonic stem cells into motor neurons. Cell, 110, 385397.CrossRefGoogle Scholar
Xu, L., Yan, J., Chen, D., Welsh, A. M., Hazel, T., Johe, K., Hatfield, G. & Koliatsos, V. E. 2006. Human neural stem cell grafts ameliorate motor neuron disease in SOD-1 transgenic rats. Transplantation, 82, 865875.CrossRefGoogle ScholarPubMed
Yohn, D. C., Miles, G. B., Rafuse, V. F. & Brownstone, R. M. 2008. Transplanted mouse embryonic stem-cell-derived motoneurons form functional motor units and reduce muscle atrophy. J Neurosci, 28, 1240912418.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×