Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-20T06:22:10.702Z Has data issue: false hasContentIssue false

20 - Toward an Optogenetic Therapy for Epilepsy

from Part IV - Optogenetics in Learning, Neuropsychiatric Diseases, and Behavior

Published online by Cambridge University Press:  28 April 2017

Krishnarao Appasani
Affiliation:
GeneExpression Systems, Inc., Massachusetts
Get access
Type
Chapter
Information
Optogenetics
From Neuronal Function to Mapping and Disease Biology
, pp. 292 - 307
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al-Juboori, S. I., Dondzillo, A., Stubblefield, E. A., et al. (2013). Light scattering properties vary across different regions of the adult mouse brain. PLoS One, 8, e67626.CrossRefGoogle ScholarPubMed
Annegers, J. F., Hauser, W. A. and Elveback, L. R. (1979). Remission of seizures and relapse in patients with epilepsy. Epilepsia, 20, 729737.CrossRefGoogle ScholarPubMed
Azimipour, M., Atry, F. and Pashaie, R. (2015). Effect of blood vessels on light distribution in optogenetic stimulation of cortex. Opt Lett, 40, 21732176.CrossRefGoogle ScholarPubMed
Azimipour, M., Baumgartner, R., Liu, Y., et al. (2014). Extraction of optical properties and prediction of light distribution in rat brain tissue. J Biomed Opt, 19, 75001.CrossRefGoogle ScholarPubMed
Ben-Menachem, E. (2002). Vagus-nerve stimulation for the treatment of epilepsy. Lancet Neurol, 1, 477482.CrossRefGoogle ScholarPubMed
Berg, A. T. (2008). The natural history of mesial temporal lobe epilepsy. Curr Opin Neurol, 21, 173178.CrossRefGoogle ScholarPubMed
Berglind, F., Ledri, M., Sorensen, A. T., et al. (2014). Optogenetic inhibition of chemically induced hypersynchronized bursting in mice. Neurobiol Dis, 65, 133141.CrossRefGoogle ScholarPubMed
Boyden, E. S., Zhang, F., Bamberg, E., et al. (2005). Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci, 8, 12631268.CrossRefGoogle ScholarPubMed
Chuong, A. S., Miri, M. L., Busskamp, V., et al. (2014). Noninvasive optical inhibition with a red-shifted microbial rhodopsin. Nat Neurosci, 17, 11231129.CrossRefGoogle ScholarPubMed
Cockerell, O. C., Johnson, A. L., Sander, J. W., et al. (1994). Mortality from epilepsy: results from a prospective population-based study. Lancet, 344, 918921.CrossRefGoogle ScholarPubMed
Cooper, I. S., Amin, I., Riklan, M., et al. (1976). Chronic cerebellar stimulation in epilepsy. Clinical and anatomical studies. Arch Neurol, 33, 559570.CrossRefGoogle ScholarPubMed
Ellender, T. J., Raimondo, J. V., Irkle, A., et al. (2014). Excitatory effects of parvalbumin-expressing interneurons maintain hippocampal epileptiform activity via synchronous after discharges. J Neurosci, 34, 1520815222.CrossRefGoogle Scholar
Engel, J. Jr. (2001). A proposed diagnostic scheme for people with epileptic seizures and with epilepsy: report of the ILAE Task Force on Classification and Terminology. Epilepsia, 42, 796803.CrossRefGoogle ScholarPubMed
Engel, J. Jr., Wiebe, S., French, J., et al. (2003). Practice parameter: temporal lobe and localized neocortical resections for epilepsy. Epilepsia, 44, 741751.CrossRefGoogle ScholarPubMed
Figueiredo, M., Lane, S., Tang, F., et al. (2011). Optogenetic experimentation on astrocytes. Exp Physiol, 96, 4050.CrossRefGoogle ScholarPubMed
Fisher, R. S., Acevedo, C., Arzimanoglou, A., et al. (2014). ILAE official report: a practical clinical definition of epilepsy. Epilepsia, 55, 475482.CrossRefGoogle ScholarPubMed
Fisher, R. S., van Emde Boas, W., Blume, W., et al. (2005). Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia, 46, 470472.CrossRefGoogle ScholarPubMed
Fisher, R. S. and Velasco, A. L. (2014). Electrical brain stimulation for epilepsy. Nat Rev Neurol, 10, 261270.CrossRefGoogle ScholarPubMed
Freund, T. F. and Buzsaki, G. (1996). Interneurons of the hippocampus. Hippocampus, 6, 347470.3.0.CO;2-I>CrossRefGoogle ScholarPubMed
Freund, T. F. and Katona, I. (2007). Perisomatic inhibition. Neuron, 56, 3342.CrossRefGoogle ScholarPubMed
Georgiadis, I., Kapsalaki, E. Z. and Fountas, K. N. (2013). Temporal lobe resective surgery for medically intractable epilepsy: a review of complications and side effects. Epilepsy Res Treat, 2013, 752195.CrossRefGoogle Scholar
Gradinaru, V., Thompson, K. R. and Deisseroth, K. (2008). eNpHR: a Natronomonas halorhodopsin enhanced for optogenetic applications. Brain Cell Biol, 36, 129139.CrossRefGoogle ScholarPubMed
Gradinaru, V., Zhang, F., Ramakrishnan, C., et al. (2010). Molecular and cellular approaches for diversifying and extending optogenetics. Cell, 141, 154165.CrossRefGoogle ScholarPubMed
Klausberger, T. (2009). GABAergic interneurons targeting dendrites of pyramidal cells in the CA1 area of the hippocampus. Eur J Neurosci, 30, 947957.CrossRefGoogle ScholarPubMed
Krook-Magnuson, E., Armstrong, C., Oijala, M., et al. (2013). On-demand optogenetic control of spontaneous seizures in temporal lobe epilepsy. Nat Commun, 4, 1376.CrossRefGoogle ScholarPubMed
Krook-Magnuson, E., Szabo, G. G., Armstrong, C., et al. (2014). Cerebellar directed optogenetic intervention inhibits spontaneous hippocampal seizures in a mouse model of temporal lobe epilepsy. eNeuro, 1, e.2014.CrossRefGoogle Scholar
Kros, L., Eelkman Rooda, O. H., Spanke, J. K., et al. (2015). Cerebellar output controls generalized spike-and-wave discharge occurrence. Ann Neurol, 77, 10271049.CrossRefGoogle ScholarPubMed
Ladas, T. P., Chiang, C. C., Gonzalez-Reyes, L. E., et al. (2015). Seizure reduction through interneuron-mediated entrainment using low frequency optical stimulation. Exp Neurol, 269, 120132.CrossRefGoogle ScholarPubMed
Ledri, M., Madsen, M. G., Nikitidou, L., et al. (2014). Global optogenetic activation of inhibitory interneurons during epileptiform activity. J Neurosci, 34, 33643377.CrossRefGoogle ScholarPubMed
Lovett-Barron, M., Turi, G. F., Kaifosh, P., et al. (2012). Regulation of neuronal input transformations by tunable dendritic inhibition. Nat Neurosci, 15, 423430, S421423.CrossRefGoogle ScholarPubMed
Marchionni, I. and Maccaferri, G. (2009). Quantitative dynamics and spatial profile of perisomatic GABAergic input during epileptiform synchronization in the CA1 hippocampus. J Physiol, 587, 56915708.CrossRefGoogle ScholarPubMed
Mullner, F. E., Wierenga, C. J. and Bonhoeffer, T. (2015). Precision of inhibition: dendritic inhibition by individual GABAergic synapses on hippocampal pyramidal cells is confined in space and time. Neuron, 87, 576589.CrossRefGoogle ScholarPubMed
Ngugi, A. K., Kariuki, S. M., Bottomley, C., et al. (2011). Incidence of epilepsy: a systematic review and meta-analysis. Neurology, 77, 10051012.CrossRefGoogle ScholarPubMed
Paz, J. T., Davidson, T. J., Frechette, E. S., et al. (2013). Closed-loop optogenetic control of thalamus as a tool for interrupting seizures after cortical injury. Nat Neurosci, 16, 6470.CrossRefGoogle ScholarPubMed
Prunetti, P. and Perucca, E. (2011). New and forthcoming anti-epileptic drugs. Curr Opin Neurol, 24, 159164.CrossRefGoogle ScholarPubMed
Schuele, S. U. and Luders, H. O. (2008). Intractable epilepsy: management and therapeutic alternatives. Lancet Neurol, 7, 514524.CrossRefGoogle ScholarPubMed
Schwarzer, C., Williamson, J. M., Lothman, E. W., et al. (1995). Somatostatin, neuropeptide Y, neurokinin B and cholecystokinin immunoreactivity in two chronic models of temporal lobe epilepsy. Neuroscience, 69, 831845.CrossRefGoogle ScholarPubMed
Seino, M. (2006). Classification criteria of epileptic seizures and syndromes. Epilepsy Res, 70(Suppl. 1)., S2733.CrossRefGoogle ScholarPubMed
Sessolo, M., Marcon, I., Bovetti, S., et al. (2015). Parvalbumin-positive inhibitory interneurons oppose propagation but favor generation of focal epileptiform activity. J Neurosci, 35, 95449557.CrossRefGoogle ScholarPubMed
Shorvon, S. D. (2011). The etiologic classification of epilepsy. Epilepsia, 52, 10521057.CrossRefGoogle ScholarPubMed
Snead, O. C. 3rd (1995). Basic mechanisms of generalized absence seizures. Ann Neurol, 37, 146157.CrossRefGoogle ScholarPubMed
Somogyi, P. and Klausberger, T. (2005). Defined types of cortical interneurone structure space and spike timing in the hippocampus. J Physiol, 562, 926.CrossRefGoogle ScholarPubMed
Spencer, S. and Huh, L. (2008). Outcomes of epilepsy surgery in adults and children. Lancet Neurol, 7, 525537.CrossRefGoogle ScholarPubMed
Sperk, G., Marksteiner, J., Gruber, B., et al. (1992). Functional changes in neuropeptide Y- and somatostatin-containing neurons induced by limbic seizures in the rat. Neuroscience, 50, 831846.CrossRefGoogle ScholarPubMed
Sukhotinsky, I., Chan, A. M., Ahmed, O. J., et al. (2013). Optogenetic delay of status epilepticus onset in an in vivo rodent epilepsy model. PLoS One, 8, e62013.CrossRefGoogle Scholar
Tanriverdi, T., Poulin, N. and Olivier, A. (2008). Life 12 years after temporal lobe epilepsy surgery: a long-term, prospective clinical study. Seizure, 17, 339349.CrossRefGoogle ScholarPubMed
Tomson, T., Walczak, T., Sillanpaa, M., et al. (2005). Sudden unexpected death in epilepsy: a review of incidence and risk factors. Epilepsia, 46(Suppl. 11), 5461.CrossRefGoogle ScholarPubMed
Tønnesen, J. (2013). Optogenetic cell control in experimental models of neurological disorders. Behav Brain Res, 255, 3543.CrossRefGoogle ScholarPubMed
Tønnesen, J., Sorensen, A. T., Deisseroth, K., et al. (2009). Optogenetic control of epileptiform activity. PNAS, 106, 1216212167.CrossRefGoogle ScholarPubMed
Tye, K. M. and Deisseroth, K. (2012). Optogenetic investigation of neural circuits underlying brain disease in animal models. Nat Rev Neurosci, 13, 251266.CrossRefGoogle ScholarPubMed
Wiebe, S., Blume, W. T., Girvin, J. P., et al. (2001). A randomized, controlled trial of surgery for temporal-lobe epilepsy. N Engl J Med, 345, 311318.CrossRefGoogle ScholarPubMed
Wieser, H. G. (2004). ILAE Commission Report. Mesial temporal lobe epilepsy with hippocampal sclerosis. Epilepsia, 45, 695714.Google ScholarPubMed
Wittner, L., Eross, L., Czirjak, S., et al. (2005). Surviving CA1 pyramidal cells receive intact perisomatic inhibitory input in the human epileptic hippocampus. Brain, 128, 138152.CrossRefGoogle ScholarPubMed
Woodson, W., Nitecka, L. and Ben-Ari, Y. (1989). Organization of the GABAergic system in the rat hippocampal formation: a quantitative immunocytochemical study. J Comp Neurol, 280, 254271.CrossRefGoogle ScholarPubMed
Wyeth, M. S., Zhang, N., Mody, I., et al. (2010). Selective reduction of cholecystokinin-positive basket cell innervation in a model of temporal lobe epilepsy. J Neurosci, 30, 89939006.CrossRefGoogle Scholar
Wykes, R. C., Heeroma, J. H., Mantoan, L., et al. (2012). Optogenetic and potassium channel gene therapy in a rodent model of focal neocortical epilepsy. Sci Transl Med, 4, 161ra152.CrossRefGoogle Scholar
Yekhlef, L., Breschi, G. L., Lagostena, L., et al. (2015). Selective activation of parvalbumin- or somatostatin-expressing interneurons triggers epileptic seizurelike activity in mouse medial entorhinal cortex. J Neurophysiol, 113, 16161630.CrossRefGoogle ScholarPubMed
Zhang, F., Wang, L. P., Brauner, M., et al. (2007). Multimodal fast optical interrogation of neural circuitry. Nature, 446, 633639.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×