Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-20T06:44:06.890Z Has data issue: false hasContentIssue false

24 - A Promise of Vision Restoration

from Part V - Optogenetics in Vision Restoration and Memory

Published online by Cambridge University Press:  28 April 2017

Krishnarao Appasani
Affiliation:
GeneExpression Systems, Inc., Massachusetts
Get access
Type
Chapter
Information
Optogenetics
From Neuronal Function to Mapping and Disease Biology
, pp. 356 - 370
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aït-Ali, N., Fridlich, R., Millet-Puel, G. et al. (2015). Rod-derived cone viability factor promotes cone survival by stimulating aerobic glycolysis. Cell, 161, 817832.CrossRefGoogle ScholarPubMed
Bartsch, U., Oriyakhel, W., Kenna, P.F. et al. (2008). Retinal cells integrate into the outer nuclear layer and differentiate into mature photoreceptors after subretinal transplantation into adult mice. Exp. Eye Res., 86, 691700.CrossRefGoogle ScholarPubMed
Bertschinger, D.R., Beknazar, E., Simonutti, M. et al. (2008). A review of in vivo animal studies in retinal prosthesis research. Graefes Arch. Clin. Exp. Ophthalmol., 246, 15051517.CrossRefGoogle ScholarPubMed
Bi, A., Cui, J., Ma, Y.-P. et al. (2006). Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. Neuron, 50, 2333.CrossRefGoogle ScholarPubMed
Busskamp, V., Duebel, J., Balya, D. et al. (2010). Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa. Science, 329, 413417.CrossRefGoogle ScholarPubMed
Caporale, N., Kolstad, K.D., Lee, T. et al. (2011). LiGluR restores visual responses in rodent models of inherited blindness. Mol. Ther. J. Am. Soc. Gene Ther., 19, 12121219.CrossRefGoogle ScholarPubMed
Cehajic-Kapetanovic, J., Eleftheriou, C., Allen, A.E. et al. (2015). Restoration of vision with ectopic expression of human rod opsin. Curr. Biol., 25, 21112122.CrossRefGoogle ScholarPubMed
Cha, K., Horch, K.W., Normann, R.A., (1992a). Mobility performance with a pixelized vision system. Vision Res., 32, 13671372.CrossRefGoogle ScholarPubMed
Cha, K., Horch, K.W., Normann, R.A. et al. (1992b). Reading speed with a pixelized vision system. J. Opt. Soc. Am. A., 9, 673677.CrossRefGoogle ScholarPubMed
Chuang, A.T., Margo, C.E., Greenberg, P.B. (2014). Retinal implants: a systematic review. Br. J. Ophthalmol., 98, 852856.CrossRefGoogle ScholarPubMed
Cideciyan, A.V., Hauswirth, W.W., Aleman, T.S. et al. (2009). Human RPE65 gene therapy for Leber congenital amaurosis: persistence of early visual improvements and safety at 1 year. Hum. Gene Ther., 20, 9991004.CrossRefGoogle ScholarPubMed
Cronin, T., Vandenberghe, L.H., Hantz, P. et al. (2014). Efficient transduction and optogenetic stimulation of retinal bipolar cells by a synthetic adeno-associated virus capsid and promoter. EMBO Mol. Med. 6, 11751190.CrossRefGoogle ScholarPubMed
da Cruz, L., Coley, B.F., Dorn, J. et al. (2013). The Argus II epiretinal prosthesis system allows letter and word reading and long-term function in patients with profound vision loss. Br. J. Ophthalmol., 97, 632636.CrossRefGoogle ScholarPubMed
Daiger, S.P., Sullivan, L.S., Bowne, S.J., (2013). Genes and mutations causing retinitis pigmentosa. Clin. Genet. 84, 132141.CrossRefGoogle ScholarPubMed
Doroudchi, M.M., Greenberg, K.P., Liu, J. et al. (2011). Virally delivered channelrhodopsin-2 safely and effectively restores visual function in multiple mouse models of blindness. Mol. Ther., 19, 12201229.CrossRefGoogle ScholarPubMed
Ernst, O.P., Lodowski, D.T., Elstner, M. et al. (2014). Microbial and animal rhodopsins: structures, functions, and molecular mechanisms. Chem. Rev., 114, 126163.CrossRefGoogle ScholarPubMed
Gaub, B.M., Berry, M.H., Holt, A.E. et al. (2015). Optogenetic vision restoration using rhodopsin for enhanced sensitivity. Mol. Ther., 23, 15621571.CrossRefGoogle ScholarPubMed
Gaub, B.M., Berry, M.H., Holt, A.E. et al. (2014). Restoration of visual function by expression of a light-gated mammalian ion channel in retinal ganglion cells or ON-bipolar cells. Proc. Natl. Acad. Sci. U. S. A., 111, E5574E5583.CrossRefGoogle ScholarPubMed
GenVec, (2011). Study of AdGVPEDF.11D in neovascular age-related macular degeneration (AMD). URL https://clinicaltrials.gov/ct2/show/NCT00109499Google Scholar
Greenberg, K.P., Pham, A., Weblin, F.S. (2011). Differential targeting of optical neuromodulators to ganglion cell soma and dendrites allows dynamic control of center-surround antagonism. Neuron, 69, 713720.CrossRefGoogle ScholarPubMed
Haupts, U., Tittor, J., Bamberg, E. et al. (1997). General concept for ion translocation by halobacterial retinal proteins: the isomerization/switch/transfer (IST) model. Biochemistry, 36, 27.CrossRefGoogle ScholarPubMed
Holz, F.G., Schmitz-Valckenberg, S., Fleckenstein, M., (2014). Recent developments in the treatment of age-related macular degeneration. J. Clin. Invest., 124, 14301438.CrossRefGoogle ScholarPubMed
Humayun, M.S., Dorn, J.D., da Cruz, L. et al. (2012). Interim results from the international trial of Second Sight’s visual prosthesis. Ophthalmology, 119, 779788.CrossRefGoogle ScholarPubMed
International Commission on Non-Ionizing Radiation Protection, (2013). ICNIRP guidelines on limits of exposure to incoherent visible and infrared radiation. Health Phys. 105, 7496.CrossRefGoogle Scholar
Ivanova, E., Hwang, G.-S., Pan, Z.-H. et al. (2010). Evaluation of AAV-mediated expression of Chop2-GFP in the marmoset retina. Invest. Ophthalmol. Vis. Sci., 51, 52885296.CrossRefGoogle ScholarPubMed
Ivanova, E., Pan, Z.-H., (2009). Evaluation of the adeno-associated virus mediated long-term expression of channelrhodopsin-2 in the mouse retina. Mol. Vis., 15, 16801689.Google ScholarPubMed
Jones, B., Pfeiffer, R., Ferrell, W. et al. (2016). Retinal remodeling in human retinitis pigmentosa. Exp. Eye Res., 150, 149165.CrossRefGoogle ScholarPubMed
Klapoetke, N.C., Murata, Y., Kim, S.S. et al. (2014). Independent optical excitation of distinct neural populations. Nat. Methods, 11, 338346.CrossRefGoogle ScholarPubMed
Kleinlogel, S., Feldbauer, K., Dempski, R.E. et al. (2011). Ultra light-sensitive and fast neuronal activation with the Ca2+-permeable channelrhodopsin CatCh. Nat. Neurosci., 14, 513518.CrossRefGoogle ScholarPubMed
Lagali, P.S., Balya, D., Awatramani, G.B. et al. (2008). Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration. Nat. Neurosci., 11, 667675.CrossRefGoogle Scholar
Lamba, D., Gust, J., Reh, T., (2009). Transplantation of human embryonic stem cells derived photoreceptors restores some visual function in Crx deficient mice. Cell Stem Cell, 4, 7379.CrossRefGoogle ScholarPubMed
Léveillard, T., Mohand-Saïd, S., Lorentz, O. et al. (2004). Identification and characterization of rod-derived cone viability factor. Nat. Genet., 36, 755759.CrossRefGoogle ScholarPubMed
Lim, L.S., Mitchell, P., Seddon, J.M. et al. (2012). Age-related macular degeneration. Lancet Lond. Engl., 379, 17281738.CrossRefGoogle ScholarPubMed
Lin, B., Koizumi, A., Tanaka, N. et al. (2008). Restoration of visual function in retinal degeneration mice by ectopic expression of melanopsin. Proc. Natl. Acad. Sci. U. S. A., 105, 1600916014.CrossRefGoogle ScholarPubMed
Lin, J.Y., Knutsen, P.M., Muller, A. et al. (2013). ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nat. Neurosci., 16, 14991508.CrossRefGoogle ScholarPubMed
Lorach, H., Benosman, R., Marre, O. et al. (2012). Artificial retina: the multichannel processing of the mammalian retina achieved with a neuromorphic asynchronous light acquisition device. J. Neural Eng., 9, 066004.CrossRefGoogle ScholarPubMed
Lorach, H., Goetz, G., Smith, R. et al. (2015). Photovoltaic restoration of sight with high visual acuity. Nat. Med., 21, 476482.CrossRefGoogle ScholarPubMed
Macé, E., Caplette, R., Marre, O. et al. (2015). Targeting channelrhodopsin-2 to ON-bipolar cells with vitreally administered AAV restores ON and OFF visual responses in blind mice. Mol. Ther., 23, 716.CrossRefGoogle ScholarPubMed
MacLaren, R.E., Groppe, M., Barnard, A.R. et al. (2014). Retinal gene therapy in patients with choroideremia: initial findings from a Phase 1/2 clinical trial. Lancet, 383, 11291137.CrossRefGoogle ScholarPubMed
MacLaren, R.E., Pearson, R.A., MacNeil, A. et al. (2006). Retinal repair by transplantation of photoreceptor precursors. Nature, 444, 203207.CrossRefGoogle ScholarPubMed
Masu, M., Iwakabe, H., Tagawa, Y. et al. (1995). Specific deficit of the ON response in visual transmission by targeted disruption of the mGIuR6 gene. Cell, 80, 757765.CrossRefGoogle ScholarPubMed
Polosukhina, A., Litt, J., Tochitsky, I. et al. (2012). Photochemical restoration of visual responses in blind mice. Neuron, 75, 271282.CrossRefGoogle ScholarPubMed
RetroSense Therapeutics, (2016). RST-001 Phase I/II trial for retinitis pigmentosa. URL https://clinicaltrials.gov/ct2/show/NCT02556736?term=optogenetic&rank=1Google Scholar
Sanofi, (2015). Phase I/IIa study of SAR422459 in patients with Stargardt’s macular degeneration. URL https://clinicaltrials.gov/ct2/show/NCT01367444Google Scholar
Sanofi, (2016). Study of UshStat in patients with retinitis pigmentosa associated with usher syndrome type 1B. URL https://clinicaltrials.gov/ct2/show/NCT01505062Google Scholar
Santos, A., Humayun, M.S., de Juan, E. et al. (1997). Preservation of the inner retina in retinitis pigmentosa. A morphometric analysis. Arch. Ophthalmol., 115, 511515.CrossRefGoogle ScholarPubMed
Schiller, P., Sandell, J., Maunsell, J. (1986). Functions of the ON and OFF channels of the visual system. Nature, 322, 824825.CrossRefGoogle ScholarPubMed
Sommerhalder, J., Rappaz, B., de Haller, R. et al. (2004). Simulation of artificial vision: II. Eccentric reading of full-page text and the learning of this task. Vision Res., 44, 16931706.CrossRefGoogle ScholarPubMed
Tochitsky, I., Polosukhina, A., Degtyar, V.E. et al. (2014). Restoring visual function to blind mice with a photoswitch that exploits electrophysiological remodeling of retinal ganglion cells. Neuron, 81, 800813.CrossRefGoogle ScholarPubMed
Tomita, H., Sugano, E., Isago, H. et al. (2010). Channelrhodopsin-2 gene transduced into retinal ganglion cells restores functional vision in genetically blind rats. Exp. Eye Res., 90, 429436.CrossRefGoogle ScholarPubMed
Tomita, H., Sugano, E., Murayama, N. et al. (2014). Restoration of the majority of the visual spectrum by using modified Volvox channelrhodopsin-1. Mol. Ther., 22, 14341440.CrossRefGoogle ScholarPubMed
Tomita, H., Sugano, E., Yawo, H. et al. (2007). Restoration of visual response in aged dystrophic RCS rats using AAV-mediated channelopsin-2 gene transfer. Invest. Ophthalmol. Vis. Sci., 48, 38213826.CrossRefGoogle ScholarPubMed
Tosini, G., Ferguson, I., Tsubota, K., (2016). Effects of blue light on the circadian system and eye physiology. Mol. Vis., 22, 6172.Google ScholarPubMed
van Wyk, M., Pielecka-Fortuna, J., Löwel, S. et al. (2015). Restoring the ON switch in blind retinas: opto-mGluR6, a next-generation, cell-tailored optogenetic tool. PLoS Biol., 13, 31002143.CrossRefGoogle ScholarPubMed
Volgraf, M., Gorostiza, P., Numano, R. et al. (2006). Allosteric control of an ionotropic glutamate receptor with an optical switch. Nat. Chem. Biol., 2, 4752.CrossRefGoogle ScholarPubMed
Vollrath, D., Feng, W., Duncan, J.L. et al. (2001). Correction of the retinal dystrophy phenotype of the RCS rat by viral gene transfer of Mertk. Proc. Natl. Acad. Sci. U. S. A., 98, 1258412589.CrossRefGoogle ScholarPubMed
Wu, C., Ivanova, E., Zhang, Y. et al. (2013). rAAV-mediated subcellular targeting of optogenetic tools in retinal ganglion cells in vivo. PLoS One, 8, 66332.CrossRefGoogle ScholarPubMed
Yawn, R., Hunter, J.B., Sweeney, A.D. et al. (2015). Cochlear implantation: a biomechanical prosthesis for hearing loss. F1000Prime Rep., 7, 45.CrossRefGoogle ScholarPubMed
Yin, L., Greenberg, K., Hunter, J.J. et al. (2011). Intravitreal injection of AAV2 transduces macaque inner retina. Invest. Ophthalmol. Vis. Sci., 52, 27752783.CrossRefGoogle ScholarPubMed
Zhang, F., Vierock, J., Yizhar, O. et al. (2011). The microbial opsin family of optogenetic tools. Cell, 147, 14461457.CrossRefGoogle ScholarPubMed
Zhang, Y., Ivanova, E., Bi, A. et al. (2009). Ectopic expression of multiple microbial rhodopsins restores ON and OFF light responses in retinas with photoreceptor degeneration. J. Neurosci., 29, 91869196.CrossRefGoogle ScholarPubMed
Zrenner, E., Bartz-Schmidt, K.U., Benav, H. et al. (2011). Subretinal electronic chips allow blind patients to read letters and combine them to words. Proc. Biol. Sci., 278, 14891497.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×