Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-09T13:26:07.821Z Has data issue: false hasContentIssue false

14 - Optogenetics for Neurohormones and Neuropeptides: Focus on Oxytocin

from Part III - Optogenetics in Neurobiology, Brain Circuits, and Plasticity

Published online by Cambridge University Press:  28 April 2017

Krishnarao Appasani
Affiliation:
GeneExpression Systems, Inc., Massachusetts
Get access
Type
Chapter
Information
Optogenetics
From Neuronal Function to Mapping and Disease Biology
, pp. 196 - 205
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Apergis-Schoute, J., Iordanidou, P., Faure, C., Jego, S., Schöne, C., Aitta-Aho, T., Adamantidis, A., Burdakov, D. (2015). Optogenetic evidence for inhibitory signaling from orexin to MCH neurons via local microcircuits. Journal of Neuroscience, 35, 54355441.CrossRefGoogle ScholarPubMed
Aponte, Y., Atasoy, D., Sternson, S.M. (2011). AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training. Nature Neuroscience, 14, 351355.CrossRefGoogle ScholarPubMed
Atasoy, D., Betley, J.N., Su, H.H., Sternson, S.M. (2012). Deconstruction of a neural circuit for hunger. Nature, 488, 172177.CrossRefGoogle ScholarPubMed
Busnelli, M., Saulière, A., Manning, M., Bouvier, M., Galés, C., Chini, B. (2012). Functional selective oxytocin-derived agonists discriminate between individual G protein family subtypes. Journal of Biological Chemistry, 287, 36173629.CrossRefGoogle ScholarPubMed
Choe, H.K., Reed, M.D., Benavidez, N., Montgomery, D., Soares, N., Yim, Y.S., Choi, G.B. (2015). Oxytocin mediates entrainment of sensory stimuli to social cues of opposing valence. Neuron, 87, 152163.CrossRefGoogle ScholarPubMed
de Kock, C.P., Wierda, K.D., Bosman, L.W., Min, R., Koksma, J.J., Mansvelder, H.D., Verhage, M., Brussaard, A.B. (2003). Somatodendritic secretion in oxytocin neurons is upregulated during the female reproductive cycle. Journal of Neuroscience, 23, 27262734.CrossRefGoogle ScholarPubMed
Dreifuss, J.J. (1975). A review on neurosecretory granules: their contents and mechanisms of release. Annals of New York Academy of Sciences, 248, 184201.CrossRefGoogle ScholarPubMed
Eliava, M., Melchior, M., Knobloch-Bollmann, H.S., Wahis, J., da Silva Gouveia, M., Tang, Y., Ciobanu, A.C., Triana del Rio, R., Roth, L.C., Althammer, F., Chavant, V., Goumon, Y., Gruber, T., Busnelli, M., Chini, B., Tan, L., Mitre, M., Froemke, R.C., Chao, M.V., Giese, G., Sprengel, R., Kuner, R., Poisbeau, P., Seeburg, P.H., Stoop, R., Charlet, A., Grinevich, V. (2016). A new population of parvocellular oxytocin neurons controlling magnocellular neuron activity and inflammatory pain processing. Neuron, 89, 12911304.CrossRefGoogle ScholarPubMed
Eriksson, M., Ceccatelli, S., Uvnäs-Moberg, K., Iadarola, M., Hökfelt, T. (1996). Expression of fos-related antigens, oxytocin, dynorphin and galanin in the paraventricular and supraoptic nuclei of lactating rats. Neuroendocrinology, 63, 356367.CrossRefGoogle ScholarPubMed
Fields, R.L, Ponzio, T.A., Kawasaki, M., Gainer, H. (2012). Cell-type specific oxytocin gene expression from AAV delivered promoter deletion constructs into the rat supraoptic nucleus in vivo. PLoS One, 7, e32085.CrossRefGoogle ScholarPubMed
Grinevich, V., Desarménien, M.G., Chini, B., Tauber, M., Muscatelli, F. (2015). Ontogenesis of oxytocin pathways in the mammalian brain: late maturation and psychosocial disorders. Frontiers in Neuroanatomy, 8, 164.CrossRefGoogle ScholarPubMed
Knobloch, H.S., Charlet, A., Hoffmann, L.C., Eliava, M., Khrulev, S., Cetin, A.H., Osten, P., Schwarz, M. K., Seeburg, P.H., Stoop, R., Grinevich, V. (2012). Evoked axonal oxytocin release in the central amygdala attenuates fear response. Neuron, 73, 553566.CrossRefGoogle ScholarPubMed
Landry, M., Vila-Porcile, E., Hökfelt, T., Calas, A. (2003). Differential routing of coexisting neuropeptides in vasopressin neurons. European Journal of Neuroscience, 17, 579589.CrossRefGoogle ScholarPubMed
Lee, H.J., Macbeth, A.H., Pagani, J.H., Young, W.S. 3rd. (2009). Oxytocin: the great facilitator of life. Progress in Neurobiology, 88, 127151.Google ScholarPubMed
Ludwig, M., Sabatier, N., Dayanithi, G., Russell, J.A., Leng, G. (2002). The active role of dendrites in the regulation of magnocellular neurosecretory cell behavior. Progress in Brain Research, 139, 247256.CrossRefGoogle ScholarPubMed
Ludwig, M., Bull, P.M., Tobin, V.A., Sabatier, N., Landgraf, R., Dayanithi, G., Leng, G. (2005). Regulation of activity-dependent dendritic vasopressin release from rat supraoptic neurons. Journal of Physiology, 564, 515522.CrossRefGoogle Scholar
Marlin, B.J., Mitre, M., D’amour, J.A., Chao, M.V., Froemke, R.C. (2015). Oxytocin enables maternal behaviour by balancing cortical inhibition. Nature, 520, 499504.CrossRefGoogle ScholarPubMed
McCall, J.G., Al-Hasani, R., Siuda, E.R., Hong, D.Y., Norris, A.J., Ford, C.P., Bruchas, M.R. (2015). CRH engagement of the locus coeruleus noradrenergic system mediates stress-Induced anxiety. Neuron, 87, 605620.CrossRefGoogle ScholarPubMed
Mendell, L.M., Wall, P.D. (1965). Responses of single dorsal cord cells to peripheral cutaneous unmyelinated fibers. Nature, 206, 9799.CrossRefGoogle Scholar
Miesenböck, G., De Angelis, D.A., Rothman, J. E. (1998). Vizualizing secretion and synaptic transmission with pH-sensitive green fluorescent protein. Nature, 394, 192195.CrossRefGoogle Scholar
Mong, J.A, Pfaff, D.W. (2004). Hormonal symphony: steroid orchestration of gene modules for sociosexual behaviors. Molecular Psychiatry, 9, 550556.CrossRefGoogle ScholarPubMed
Oliet, S.H., Piet, R., Poulain, D.A, Theodosis, D.T. (2004). Glial modulation of synaptic transmission: insights from the supraoptic nucleus of the hypothalamus. Glia, 47, 258267.CrossRefGoogle ScholarPubMed
Owen, S.F., Tuncdemir, S.N., Bader, P.L., Tirko, N.N., Fishell, G., Tsien, R.W. (2013). Oxytocin enhances hippocampal spike transmission by modulating fast-spiking interneurons. Nature, 500, 458462.CrossRefGoogle ScholarPubMed
Park, S.J., Borghuis, B.G., Rahmani, P., Zeng, Q., Kim, I.J., Demb, J.B. (2015). Function and circuitry of VIP+ interneurons in the mouse retina. Journal of Neuroscience, 35, 1068510700.CrossRefGoogle ScholarPubMed
Tovote, P., Lüthi, A. (2012). Curbing fear by axonal oxytocin release in the amygdala. Neuron, 73, 407410.CrossRefGoogle ScholarPubMed
Scott, N., Prigge, M., Yizhar, O., Kimchi, T. (2015). A sexually dimorphic hypothalamic circuit controls maternal care and oxytocin secretion. Nature, 525, 519522.CrossRefGoogle ScholarPubMed
Sears, R.M., Fink, A.E., Wigestrand, M.B., Farb, C.R., de Lecea, L., Ledoux, J.E. (2013). Orexin/hypocretin system modulates amygdala-dependent threat learning through the locus coeruleus. Proceeding of National Academy of Sciences of USA, 110, 2026020265.CrossRefGoogle ScholarPubMed
Watson, S.J., Akil, H., Fischli, W., Goldstein, A., Zimmerman, E., Nilaver, G., van wimersma Griedanus, T.B. (1982). Dynorphin and vasopressin: common localization in magnocellular neurons. Science, 216, 8587.CrossRefGoogle ScholarPubMed
Wu, Z., Autry, A.E., Bergan, J.F., Watabe-Uchida, M., Dulac, C.G. (2014). Galanin neurons in the medial preoptic area govern parental behaviour. Nature, 509, 325330.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×