Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-20T04:00:53.281Z Has data issue: false hasContentIssue false

18 - Optogenetics and the Dissection of Neural Circuits Underlying Depression and Substance-use Disorders

from Part IV - Optogenetics in Learning, Neuropsychiatric Diseases, and Behavior

Published online by Cambridge University Press:  28 April 2017

Krishnarao Appasani
Affiliation:
GeneExpression Systems, Inc., Massachusetts
Get access
Type
Chapter
Information
Optogenetics
From Neuronal Function to Mapping and Disease Biology
, pp. 257 - 275
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arencibia-Albite, F., Paladini, C., Williams, J. T. et al., (2007) Noradrenergic modulation of the hyperpolarization-activated cation current (Ih) in dopamine neurons of the ventral tegmental area. Neuroscience, 149, 303314.CrossRefGoogle ScholarPubMed
Bagot, R. C., Parise, E. M., Pena, C. J. et al., (2014) Ventral hippocampal afferents to the nucleus accumbens regulate susceptibility to depression. Nat Commun, 6:7062.CrossRefGoogle Scholar
Berton, O., Mcclung, C. A., Dileone, R. J. et al., (2006) Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science, 311, 864868.CrossRefGoogle ScholarPubMed
Berton, O. and Nestler, E. J. (2006) New approaches to antidepressant drug discovery: beyond monoamines. Nat Rev Neurosci, 7, 137151.CrossRefGoogle ScholarPubMed
Cao, J.-L., Covington, H. E., Friedman, A. K. et al., (2010) Mesolimbic dopamine neurons in the brain reward circuit mediate susceptibility to social defeat and antidepressant action. J Neurosci, 30, 1645316458.CrossRefGoogle ScholarPubMed
Carlezon, W. A. and Chartoff, E. H. (2007) Intracranial self-stimulation (ICSS) in rodents to study the neurobiology of motivation. Nat Protoc, 2, 29872995.CrossRefGoogle Scholar
Chaudhury, D., Walsh, J. J., Friedman, A. K. et al., (2013) Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons. Nature, 493, 532536.CrossRefGoogle ScholarPubMed
Christoffel, D. J., Golden, S. A., Dumitriu, D. et al., (2011) IkB kinase regulates social defeat stress-induced synaptic and behavioral plasticity. J Neurosci, 31, 314321.CrossRefGoogle Scholar
Christoffel, D. J., Golden, S. A., Walsh, J. J. et al., (2015) Excitatory transmission at thalamo-striatal synapses mediates susceptibility to social stress. Nat Neurosci, 18, 962964.CrossRefGoogle Scholar
Coppen, A. (1967) The biochemistry of affective disorders. Br J Psychiatry, 113, 12371264.CrossRefGoogle ScholarPubMed
Cunningham, C. L., Gremel, C. M. and Groblewski, P. A. (2006) Drug-induced conditioned place preference and aversion in mice. Nat Protoc, 1, 16621670.CrossRefGoogle ScholarPubMed
Di Chiara, G. and Imperato, A. (1988) Opposite effects of mu and kappa opiate agonists on dopamine release in the nucleus accumbens and in the dorsal caudate of freely moving rats. J Pharmacol Exp Ther, 244, 10671080.Google ScholarPubMed
Ferrari, A. J., Charlson, F. J., Norman, R. E. et al., (2013) Burden of depressive disorders by country, sex, age, and year: findings from the Global Burden of Disease Study 2010. PLoS Med, 10, e1001547.CrossRefGoogle ScholarPubMed
Ford, C. P., Mark, G. P. and Williams, J. T. (2006) Properties and opioid inhibition of mesolimbic dopamine neurons vary according to target location. J Neurosci, 26, 27882797.CrossRefGoogle ScholarPubMed
Friedman, A. K., Walsh, J. J., Juarez, B. et al., (2014) Enhancing depression mechanisms in midbrain dopamine neurons achieves homeostatic resilience. Science, 344, 313319.CrossRefGoogle ScholarPubMed
Golden, S. A., Covington, H. E., Berton, O. et al., (2011) A standardized protocol for repeated social defeat stress in mice. Nat. Protoc, 6, 11831191.CrossRefGoogle ScholarPubMed
Gong, S., Doughty, M., Harbaugh, C. R. et al., (2007) Targeting Cre recombinase to specific neuron populations with bacterial artificial chromosome constructs. J Neurosci, 27, 98179823.CrossRefGoogle ScholarPubMed
Grace, A. A. and Bunney, B. S. (1984a) The control of firing pattern in nigral dopamine neurons: burst firing. J Neurosci, 4, 28772890.CrossRefGoogle ScholarPubMed
Grace, A. A. and Bunney, B. S. (1984b) The control of firing pattern in nigral dopamine neurons: single spike firing. J Neurosci, 4, 28662876.CrossRefGoogle ScholarPubMed
Grace, A. A., Floresco, S. B., Goto, Y. et al., (2007) Regulation of firing of dopaminergic neurons and control of goal-directed behaviors. Trends Neurosci, 30, 220227.CrossRefGoogle ScholarPubMed
Gysling, K. and Wang, R. Y. (1983) Morphine-induced activation of A10 dopamine neurons in the rat. Brain Res, 277, 119127.CrossRefGoogle ScholarPubMed
Han, M. H. and Friedman, A. K. (2011) Virogenetic and optogenetic mechanisms to define potential therapeutic targets in psychiatric disorders. Neuropharmacology, 62, 89100.CrossRefGoogle Scholar
Hill, M. N., Hellemans, K. G., Verma, P. et al., (2013) Neurobiology of chronic mild stress: parallels to major depression. Neurosci Biobehav Rev, 36, 20852117.CrossRefGoogle Scholar
Hyman, S. E. (2007) How mice cope with stressful social situations. Cell, 131, 232234.CrossRefGoogle ScholarPubMed
Hyman, S. E., Malenka, R. C. and Nestler, E. J. (2006) Neural mechanisms of addiction: the role of reward-related learning and memory. Annu Rev Neurosci, 29, 565598.CrossRefGoogle ScholarPubMed
Koo, J. W., Mazei-Robison, M. S., Chaudhury, D. et al., (2012) BDNF is a negative modulator of morphine action. Science, 338, 124128.CrossRefGoogle ScholarPubMed
Koob, G. F., Ahmed, S. H., Boutrel, B. et al., (2004) Neurobiological mechanisms in the transition from drug use to drug dependence. Neurosci Biobehav Rev, 27, 739749.CrossRefGoogle ScholarPubMed
Krishnan, V., Han, M. H., Graham, D. L. et al., (2007) Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions. Cell, 131, 391404.CrossRefGoogle ScholarPubMed
Krishnan, V. and Nestler, E. J. (2008) The molecular neurobiology of depression. Nature, 455, 894902.CrossRefGoogle ScholarPubMed
Lammel, S., Hetzel, A., Hackel, O. et al., (2008) Unique properties of mesoprefrontal neurons within a dual mesocorticolimbic dopamine system. Neuron, 57, 760773.CrossRefGoogle ScholarPubMed
Lammel, S., Ion, D. I., Roeper, J. et al., (2011) Projection-specific modulation of dopamine neuron synapses by aversive and rewarding stimuli. Neuron, 70, 855862.CrossRefGoogle Scholar
Lemos, J. C., Wanat, M. J., Smith, J. S. et al., (2012) Severe stress switches CRF action in the nucleus accumbens from appetitive to aversive. Nature, 490, 402406.CrossRefGoogle ScholarPubMed
Lobo, M. K., Covington, H. E. 3rd, Chaudhury, D. et al., (2010) Cell type-specific loss of BDNF signaling mimics optogenetic control of cocaine reward. Science, 330, 385390.CrossRefGoogle ScholarPubMed
Lobo, M. K., Nestler, E. J. and Covington, H. E. (2012) Potential utility of optogenetics in the study of depression. Biol Psychiatry, 71, 10681074.CrossRefGoogle Scholar
Margolis, E. B., Mitchell, J. M., Ishikawa, J. et al., (2008) Midbrain dopamine neurons: projection target determines action potential duration and dopamine D(2) receptor inhibition. J Neurosci, 28, 89088913.CrossRefGoogle ScholarPubMed
Matsuda, N., Lu, H., Fukata, Y. et al., (2009) Differential activity-dependent secretion of brain-derived neurotrophic factor from axon and dendrite. J Neurosci, 29, 1418514198.CrossRefGoogle ScholarPubMed
Nestler, E. J., Gould, E. and Manji, H. (2002) Preclinical models: status of basic research in depression. Biol Psychiatry, 52, 503528.CrossRefGoogle ScholarPubMed
Nestler, E. J. and Hyman, S. E. (2010) Animal models of neuropsychiatric disorders. Nat Neurosci, 13, 11611169.CrossRefGoogle ScholarPubMed
Neuhoff, H., Neu, A., Liss, B. et al., (2002) I(H) channels contribute to the different functional properties of identified dopaminergic subpopulations in the midbrain. J Neurosci, 22, 12901302.CrossRefGoogle Scholar
Neve, R. L. and Lim, F. (2013) Generation of high-titer defective HSV-1 vectors. Curr Protoc Neurosci, Chapter 4, Unit 4.13.CrossRefGoogle Scholar
Olmstead, M. C. and Franklin, K. B. (1997) The development of a conditioned place preference to morphine: effects of lesions of various CNS sites. Behav Neurosci, 111, 13131323.CrossRefGoogle ScholarPubMed
Park, H. and Poo, M. M. (2013) Neurotrophin regulation of neural circuit development and function. Nat Rev Neurosci, 14, 723.CrossRefGoogle ScholarPubMed
Robinson, M. J. and Berridge, K. C. (2008) Instant transformation of learned repulsion into motivational “wanting”. Curr Biol, 23, 282289.CrossRefGoogle Scholar
Robinson, T. E. and Berridge, K. C. (2003) Addiction. Annu Rev Psychol, 54, 2553.CrossRefGoogle ScholarPubMed
Russo, S. J. and Nestler, E. J. (2013) The brain reward circuitry in mood disorders. Nat Rev Neurosci, 14, 609625.CrossRefGoogle ScholarPubMed
Schildkraut, J. J. (1965) The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am J Psychiatry, 122, 509522.CrossRefGoogle Scholar
Schultz, W. (2010) Dopamine signals for reward value and risk: basic and recent data. Behav Brain Funct, 6, 24.CrossRefGoogle Scholar
Schultz, W. (2015) Neuronal reward and decision signals: from theories to data. Physiol Rev, 95, 853951.CrossRefGoogle ScholarPubMed
Shirayama, Y. and Chaki, S. (2006) Neurochemistry of the nucleus accumbens and its relevance to depression and antidepressant action in rodents. Curr Neuropharmacol, 4, 277291.CrossRefGoogle ScholarPubMed
Tsai, H. C., Zhang, F., Adamantidis, A. et al., (2009) Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science, 324, 10801084.CrossRefGoogle Scholar
Tye, K. M., Mirzabekov, J. J., Warden, M. R. et al., (2013) Dopamine neurons modulate neural encoding and expression of depression-related behaviour. Nature, 493, 537541.CrossRefGoogle Scholar
Vialou, V., Robison, A. J., Laplant, Q. C. et al., (2010) [Delta]FosB in brain reward circuits mediates resilience to stress and antidepressant responses. Nat Neurosci, 13, 745752.CrossRefGoogle Scholar
Volkow, N. D. and Koob, G. (2015) Brain disease model of addiction: why is it so controversial? Lancet Psychiatry, 2, 677679.CrossRefGoogle ScholarPubMed
Volkow, N. D. and Morales, M. (2015) The brain on drugs: from reward to addiction. Cell, 162, 712725.CrossRefGoogle ScholarPubMed
Walker, D. M., Cates, H. M., Heller, E. A. et al., (2015) Regulation of chromatin states by drugs of abuse. Curr Opin Neurobiol, 30, 112121.CrossRefGoogle ScholarPubMed
Walsh, J. J., Friedman, A. K., Sun, H. et al., (2014) Stress and CRF gate neural activation of BDNF in the mesolimbic reward pathway. Nat Neurosci, 17, 2729.CrossRefGoogle ScholarPubMed
Walsh, J. J. and Han, M. H. (2014) The heterogeneity of ventral tegmental area neurons: projection functions in a mood-related context. Neuroscience, 282c, 101108.CrossRefGoogle Scholar
Wanat, M. J., Bonci, A. and Phillips, P. E. (2013) CRF acts in the midbrain to attenuate accumbens dopamine release to rewards but not their predictors. Nat Neurosci, 16, 383385.CrossRefGoogle Scholar
Wise, R. A. and Rompre, P. P. (1989) Brain dopamine and reward. Annu Rev Psychol, 40, 191225.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×