Book contents
- Frontmatter
- Contents
- Foreword
- 1 Introduction
- 2 Linear programming: theory and algorithms
- 3 LP models: asset/liability cash-flow matching
- 4 LP models: asset pricing and arbitrage
- 5 Nonlinear programming: theory and algorithms
- 6 NLP models: volatility estimation
- 7 Quadratic programming: theory and algorithms
- 8 QP models: portfolio optimization
- 9 Conic optimization tools
- 10 Conic optimization models in finance
- 11 Integer programming: theory and algorithms
- 12 Integer programming models: constructing an index fund
- 13 Dynamic programming methods
- 14 DP models: option pricing
- 15 DP models: structuring asset-backed securities
- 16 Stochastic programming: theory and algorithms
- 17 Stochastic programming models: Value-at-Risk and Conditional Value-at-Risk
- 18 Stochastic programming models: asset/liability management
- 19 Robust optimization: theory and tools
- 20 Robust optimization models in finance
- Appendix A Convexity
- Appendix B Cones
- Appendix C A probability primer
- Appendix D The revised simplex method
- References
- Index
1 - Introduction
Published online by Cambridge University Press: 06 July 2010
- Frontmatter
- Contents
- Foreword
- 1 Introduction
- 2 Linear programming: theory and algorithms
- 3 LP models: asset/liability cash-flow matching
- 4 LP models: asset pricing and arbitrage
- 5 Nonlinear programming: theory and algorithms
- 6 NLP models: volatility estimation
- 7 Quadratic programming: theory and algorithms
- 8 QP models: portfolio optimization
- 9 Conic optimization tools
- 10 Conic optimization models in finance
- 11 Integer programming: theory and algorithms
- 12 Integer programming models: constructing an index fund
- 13 Dynamic programming methods
- 14 DP models: option pricing
- 15 DP models: structuring asset-backed securities
- 16 Stochastic programming: theory and algorithms
- 17 Stochastic programming models: Value-at-Risk and Conditional Value-at-Risk
- 18 Stochastic programming models: asset/liability management
- 19 Robust optimization: theory and tools
- 20 Robust optimization models in finance
- Appendix A Convexity
- Appendix B Cones
- Appendix C A probability primer
- Appendix D The revised simplex method
- References
- Index
Summary
Optimization is a branch of applied mathematics that derives its importance both from the wide variety of its applications and from the availability of efficient algorithms. Mathematically, it refers to the minimization (or maximization) of a given objective function of several decision variables that satisfy functional constraints. A typical optimization model addresses the allocation of scarce resources among possible alternative uses in order to maximize an objective function such as total profit.
Decision variables, the objective function, and constraints are three essential elements of any optimization problem. Problems that lack constraints are called unconstrained optimization problems, while others are often referred to as constrained optimization problems. Problems with no objective functions are called feasibility problems. Some problems may have multiple objective functions. These problems are often addressed by reducing them to a single-objective optimization problem or a sequence of such problems.
If the decision variables in an optimization problem are restricted to integers, or to a discrete set of possibilities, we have an integer or discrete optimization problem. If there are no such restrictions on the variables, the problem is a continuous optimization problem. Of course, some problems may have a mixture of discrete and continuous variables. We continue with a list of problem classes that we will encounter in this book.
- Type
- Chapter
- Information
- Optimization Methods in Finance , pp. 1 - 14Publisher: Cambridge University PressPrint publication year: 2006