Published online by Cambridge University Press: 31 March 2022
Here, we define subgradients and subdifferentials of nonsmooth functions. These are a generalization of the concept of gradients for smooth functions, that can be used as the basis of algorithms. We relate subgradients to directional derivatives and to the normal cones associated with convex sets. We introduce composite nonsmooth functions that arise in regularized optimization formulations of data analysis problems and describe optimality conditions for minimizers of these functions. Finally, we describe proximal operators and the Moreau envelope, objects associated with nonsmooth functions that are the basis of algorithms for nonsmooth optimization described in the next chapter.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.