Published online by Cambridge University Press: 31 March 2022
We outline theoretical foundations for smooth optimization problems. First, we define the different types of minimizers (solutions) of unconstrained optimization problems. Next, we state Taylor’s theorem, the fundamental theorem of smooth optimization, which allows us to approximate general smooth functions by simpler (linear or quadratic) functions based on information at the current point. We show how minima can be characterized by optimality conditions involving the gradient or Hessian, which can be checked in practice. Finally, we define the convexity of sets and functions, an important property that arises often in practice and that can be exploited by the algorithms described in the remainder of the book.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.