Published online by Cambridge University Press: 31 March 2022
Here, we describe methods for minimizing a smooth function over a closed convex set, using gradient information. We first state results that characterize optimality of points in a way that can be checked, and describe the vital operation of projection onto the feasible set. We next describe the projected gradient algorithm, which is in a sense the extension of the steepest-descent method to the constrained case, analyze its convergence, and describe several extensions. We next analyze the conditional-gradient method (also known as “Frank-Wolfe”) for the case in which the feasible set is compact and demonstrate sublinear convergence of this approach when the objective function is convex.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.