Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-23T01:18:14.314Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  02 November 2023

Francesco Maggi
Affiliation:
University of Texas, Austin
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alberti, G. and Ambrosio, L.. A geometrical approach to monotone functions in Rn. Math. Z., 230(2):259316, 1999.Google Scholar
Ambrosio, L., Brué, E., and Semola, D.. Lectures on optimal transport, volume 130 of Unitext. Springer, Cham, 2021. ix+250 pp. La Matematica per il 3+2.Google Scholar
Ambrosio, L., Fusco, N., and Pallara, D.. Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 2000. xviii+434 pp.Google Scholar
Ambrosio, L., Gigli, N., and Savaré, G.. Gradient flows in metric spaces and in the space of probability measures. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, second edition, 2008. x+334 pp.Google Scholar
Ambrosio, L., Kirchheim, B., and Pratelli, A.. Existence of optimal transport maps for crystalline norms. Duke Math. J., 125(2):207241, 2004.Google Scholar
Allard, W. K.. On the first variation of a varifold. Ann. Math., 95:417491, 1972.Google Scholar
Almgren, F.. Optimal isoperimetric inequalities. Indiana Univ. Math. J., 35 (3):451547, 1986.Google Scholar
Ambrosio, L.. Lecture notes on optimal transport problems. In Mathematical aspects of evolving interfaces (Funchal, 2000), volume 1812 of Lecture Notes in Mathematics, pages 152. Springer, Berlin, 2003.Google Scholar
Ambrosio, L. and Pratelli, A.. Existence and stability results in the L1 theory of optimal transportation. In Optimal transportation and applications (Martina Franca, 2001), volume 1813 of Lecture Notes in Mathematics, pages 123160. Springer, Berlin, 2003.Google Scholar
Aubin, T.. Problèmes isopérimétriques et espaces de Sobolev. J. Differential Geom., 11(4):573598, 1976.Google Scholar
Benamou, J.-D. and Brenier, Y.. A computational fluid mechanics solution to the Monge–Kantorovich mass transfer problem. Numer. Math., 84(3): 375393, 2000.Google Scholar
Bianchini, S. and Cavalletti, F.. The Monge problem in geodesic spaces. In Nonlinear conservation laws and applications, volume 153 of IMA Volumes in Mathematics and Its Applications, pages 217233. Springer, New York, 2011.Google Scholar
Bianchini, S. and Cavalletti, F.. The Monge problem for distance cost in geodesic spaces. Comm. Math. Phys., 318(3):615673, 2013.Google Scholar
Bianchi, G., Colesanti, A., and Pucci, C.. On the second differentiability of convex surfaces. Geom. Dedicata, 60(1):3948, 1996.Google Scholar
Bianchini, S. and Daneri, S.. On Sudakov’s type decomposition of transference plans with norm costs. Mem. Amer. Math. Soc., 251(1197):vi+112, 2018.Google Scholar
Brendle, S. and Eichmair, M.. Proof of the Michael–Simon–Sobolev inequality using optimal transport. 2022.Google Scholar
Bebendorf, M.. A note on the Poincaré inequality for convex domains. Z. Anal. Anwendungen, 22(4):751756, 2003.Google Scholar
Bertrand, J.. Existence and uniqueness of optimal maps on Alexandrov spaces. Adv. Math., 219(3):838851, 2008.Google Scholar
Brenier, Y. and Gangbo, W.. Lp approximation of maps by diffeomorphisms. Calc. Var. Partial Differ. Equ., 16(2):147164, 2003.Google Scholar
Bierstone, E.. Differentiable functions. Bol. Soc. Brasil. Mat., 11(2):139189, 1980.Google Scholar
Brothers, J. E. and Morgan, F.. The isoperimetric theorem for general integrands. Mich. Math. J., 41(3):419431, 1994.Google Scholar
Brenier, Y.. Polar factorization and monotone rearrangement of vectorvalued functions. Comm. Pure Appl. Math., 44(4):375417, 1991.Google Scholar
Brendle, S.. The isoperimetric inequality for a minimal submanifold in Euclidean space. J. Amer. Math. Soc., 34(2):595603, 2021.Google Scholar
Cabré, X.. Partial differential equations, geometry and stochastic control. Butl. Soc. Catalana Mat., 15(1):727, 2000.Google Scholar
Cabré, X.. Elliptic PDE’s in probability and geometry: symmetry and regularity of solutions. Discrete Contin. Dyn. Syst., 20(3):425457, 2008.Google Scholar
Caravenna, L.. A proof of Monge problem in Rn by stability. Rend. Istit. Mat. Univ. Trieste, 43:3151, 2011.Google Scholar
Caravenna, L.. A proof of Sudakov theorem with strictly convex norms. Math. Z., 268(1–2):371407, 2011.Google Scholar
Castillon, P.. Submanifolds, isoperimetric inequalities and optimal transportation. J. Funct. Anal., 259(1):79103, 2010.Google Scholar
Cavalletti, F.. The Monge problem in Wiener space. Calc. Var. Partial Differ. Equ., 45(1–2):101124, 2012.Google Scholar
Cavalletti, F.. Optimal transport with branching distance costs and the obstacle problem. SIAM J. Math. Anal., 44(1):454482, 2012.Google Scholar
Cavalletti, F.. Decomposition of geodesics in the Wasserstein space and the globalization problem. Geom. Funct. Anal., 24(2):493551, 2014.Google Scholar
Cavalletti, F.. Monge problem in metric measure spaces with Riemannian curvature-dimension condition. Nonlinear Anal., 99:136151, 2014.Google Scholar
Champion, T. and De Pascale, L.. The Monge problem for strictly convex norms in Rd. J. Eur. Math. Soc. (JEMS), 12(6):13551369, 2010.Google Scholar
Champion, T. and De Pascale, L.. The Monge problem in Rd. Duke Math. J., 157(3):551572, 2011.Google Scholar
Cordero-Erausquin, D., Nazaret, B., and Villani, C.. A mass-transportation approach to sharp Sobolev and Gagliardo-Nirenberg inequalities. Adv. Math., 182(2):307332, 2004.Google Scholar
Caffarelli, L. A., Feldman, M., and McCann, R. J.. Constructing optimal maps for Monge’s transport problem as a limit of strictly convex costs. J. Amer. Math. Soc., 15(1):126, 2002.Google Scholar
Cavalletti, F. and Huesmann, M.. Existence and uniqueness of optimal transport maps. Ann. Inst. H. Poincaré C Anal. Non Linéaire, 32(6):13671377, 2015.Google Scholar
Cavalletti, F. and Mondino, A.. Optimal maps in essentially non-branching spaces. Commun. Contemp. Math., 19(6):1750007, 27, 2017.Google Scholar
Cavalletti, F. and Mondino, A.. Sharp and rigid isoperimetric inequalities in metric-measure spaces with lower Ricci curvature bounds. Invent. Math., 208(3):803849, 2017.Google Scholar
Cavalletti, F. and Mondino, A.. Sharp geometric and functional inequalities in metric measure spaces with lower Ricci curvature bounds. Geom. Topol., 21(1):603645, 2017.Google Scholar
Cavalletti, F., Maggi, F., and Mondino, A.. Quantitative isoperimetry à la Levy-Gromov. Comm. Pure Appl. Math., 72(8):16311677, 2019.Google Scholar
Cabré, X., Ros-Oton, X., and Serra, J.. Sharp isoperimetric inequalities via the ABP method. J. Eur. Math. Soc. (JEMS), 18(12):29712998, 2016.Google Scholar
Castaing, C. and Valadier, M.. Convex analysis and measurable multifunctions, volume 580 of Lecture Notes in Mathematics. Springer-Verlag, Berlin and New York, 1977. vii+278 pp.Google Scholar
De Giorgi, E.. Motion by variation. In Current problems of analysis and mathematical physics (Italian) (Taormina, 1992), pages 6570. Univ. Roma “La Sapienza,” Rome, 1993.Google Scholar
De Giorgi, E.. New problems on minimizing movements. In Boundary value problems for partial differential equations and applications, volume 29 of RMA Research Notes in Applied Mathematics, pages 8198. Masson, Paris, 1993.Google Scholar
De Philippis, G. and Alessio, Figalli. The Monge-Ampère equation and its link to optimal transportation. Bull. Amer. Math. Soc. (N.S.), 51(4):527580, 2014.Google Scholar
De Pascale, L. and Rigot, S.. Monge’s transport problem in the Heisenberg group. Adv. Calc. Var., 4(2):195227, 2011.Google Scholar
Evans, L. C. and Gariepy, R. F.. Measure theory and fine properties of functions. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1992. viii+268 pp.Google Scholar
Evans, L. C. and Gangbo, W.. Differential equations methods for the Monge– Kantorovich mass transfer problem. Mem. Amer. Math. Soc., 137(653): viii+66, 1999.Google Scholar
Federer, H.. Geometric measure theory, volume 153 of Die Grundlehren der mathematischen Wissenschaften. Springer-Verlag New York Inc., New York, 1969. xiv+676 pp.Google Scholar
Figalli, A. and Glaudo, F.. An invitation to optimal transport, Wasserstein distances, and gradient flows. EMS Textbooks in Mathematics. EMS Press, Berlin, 2021. vi+136 pp.Google Scholar
Figalli, A.. The Monge problem on non-compact manifolds. Rend. Semin. Mat. Univ. Padova, 117:147166, 2007.Google Scholar
Feldman, M. and McCann, R. J.. Monge’s transport problem on a Riemannian manifold. Trans. Amer. Math. Soc., 354(4):16671697, 2002.Google Scholar
McCann, R.. Polar factorization of maps on Riemannian manifolds. Geom. Funct. Anal., 11(4):589608, 2001.CrossRefGoogle Scholar
Figalli, A., Maggi, F., and Pratelli, A.. A mass transportation approach to quantitative isoperimetric inequalities. Inv. Math., 182(1):167211, 2010.Google Scholar
Ferone, V., Nitsch, C., and Trombetti, C.. A remark on optimal weighted Poincaré inequalities for convex domains. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 23(4):467475, 2012.Google Scholar
Feyel, D. and Üstünel, A. S.. Monge–Kantorovitch measure transportation and Monge-Ampère equation on Wiener space. Probab. Theory Relat. Fields, 128(3):347385, 2004.Google Scholar
Gangbo, W.. The Monge mass transfer problem and its applications. In Monge Ampère equation: applications to geometry and optimization (Deerfield Beach, FL, 1997), volume 226 of Contemporary Mathematics, pages 79104. American Mathematical Society, Providence, RI, 1999.Google Scholar
Gigli, N.. Optimal maps in non branching spaces with Ricci curvature bounded from below. Geom. Funct. Anal., 22(4):990999, 2012.Google Scholar
Gigli, N., Kuwada, K., and -Ichi Ohta, S.. Heat flow on Alexandrov spaces. Comm. Pure Appl. Math., 66(3):307331, 2013.Google Scholar
Gromov, M. and Milman, V. D.. Generalization of the spherical isoperimetric inequality to uniformly convex Banach spaces. Compositio Math., 62(3): 263282, 1987.Google Scholar
Gangbo, W. and McCann, R. J.. The geometry of optimal transportation. Acta Math., 177(2):113161, 1996.Google Scholar
Gigli, N., Rajala, T., and Sturm, K.-T.. Optimal maps and exponentiation on finite-dimensional spaces with Ricci curvature bounded from below. J. Geom. Anal., 26(4):29142929, 2016.Google Scholar
Jordan, R., Kinderlehrer, D., and Otto, F.. The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal., 29(1):117, 1998.Google Scholar
Klartag, B.. Needle decompositions in Riemannian geometry. Mem. Amer. Math. Soc., 249(1180):v+77, 2017.Google Scholar
Kannan, R., Lovász, L., and Simonovits, M.. Isoperimetric problems for convex bodies and a localization lemma. Discrete Comput. Geom., 13(3–4): 541559, 1995.Google Scholar
Knothe, H.. Contributions to the theory of convex bodies. Mich. Math. J., 4: 3952, 1957.Google Scholar
Lieb, E. H.. The stability of matter: from atoms to stars. Bull. Amer. Math. Soc. (N.S.), 22(1):149, 1990.Google Scholar
Lovász, L. and Simonovits, M.. Random walks in a convex body and an improved volume algorithm. Random Struct. Algorithms, 4(4):359412, 1993.Google Scholar
Maggi, F.. Sets of finite perimeter and geometric variational problems: an introduction to Geometric Measure Theory, volume 135 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2012.Google Scholar
McCann, R. J.. Existence and uniqueness of monotone measure-preserving maps. Duke Math. J., 80(2):309323, 1995.Google Scholar
McCann, R. J.. A convexity principle for interacting gases. Adv. Math., 128 (1):153179, 1997.Google Scholar
Maggi, F. and Neumayer, R.. A bridge between Sobolev and Escobar inequalities and beyond. J. Funct. Anal., 273(6):20702106, 2017.Google Scholar
Maggi, F., Neumayer, R., and Tomasetti, I.. Rigidity theorems for best Sobolev inequalities. 2022.Google Scholar
Marchioro, C. and Pulvirenti, M.. Mathematical theory of incompressible nonviscous fluids, volume 96 of Applied Mathematical Sciences. Springer-Verlag, New York, 1994. ISBN 0-387-94044-8. xii+283 pp.Google Scholar
Milman, V. D. and Schechtman, G.. Asymptotic theory of finite-dimensional normed spaces. With an appendix by Gromov, M.. Number 1200 in Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1986. viii+156 pp.Google Scholar
Müller, S.. Variational models for microstructure and phase transitions. In Calculus of variations and geometric evolution problems (Cetraro, 1996), volume 1713 of Lecture Notes in Mathematics, pp. 85210. Springer, Berlin, 1999.Google Scholar
Maggi, F. and Villani, C.. Balls have the worst best Sobolev inequalities. J. Geom. Anal., 15(1):83121, 2005.Google Scholar
Maggi, F. and Villani, C.. Balls have the worst best Sobolev inequalities. II. Variants and extensions. Calc. Var. Partial Differ. Equ., 31(1):4774, 2008.Google Scholar
Nazaret, B.. Best constant in Sobolev trace inequalities on the half-space. Nonlinear Anal., 65(10):19771985, 2006.Google Scholar
Otto, F.. Dynamics of labyrinthine pattern formation in magnetic fluids: a mean-field theory. Arch. Rational Mech. Anal., 141(1):63103, 1998.Google Scholar
Otto, F.. The geometry of dissipative evolution equations: the porous medium equation. Comm. Partial Differ. Equ., 26(1–2):101174, 2001.Google Scholar
Pedregal, P.. Parametrized measures and variational principles, volume 30 of Progress in Nonlinear Differential Equations and their Applications. Birkhäuser Verlag, Basel, 1997. xii+212 pp.Google Scholar
Pratelli, A.. Existence of optimal transport maps and regularity of the transport density in mass transportation problems. 2003. Available at https://cvgmt.sns.it/paper/758/.Google Scholar
Payne, L. E. and Weinberger, H. F.. An optimal Poincaré inequality for convex domains. Arch. Rational Mech. Anal., 5(1960):286292, 1960.Google Scholar
Tyrrell Rockafellar, R.. Convex analysis. Princeton Landmarks in Mathematics. Princeton University Press, Princeton, NJ, 1997. xviii+451 pp. Reprint of the 1970 original, Princeton Paperbacks.Google Scholar
Rajala, T. and Sturm, K.-T.. Non-branching geodesics and optimal maps in strong C D(K, ∞)-spaces. Calc. Var. Partial Differ. Equ., 50(3–4):831846, 2014.Google Scholar
Santambrogio, F.. Optimal transport for applied mathematicians, volume 87 of Progress in Nonlinear Differential Equations and their Applications. Birkhäuser/Springer, Cham, 2015. xxvii+353 pp. Calculus of variations, PDEs, and modeling.Google Scholar
Simon, L.. Lectures on geometric measure theory, volume 3 of Proceedings of the Centre for Mathematical Analysis. Australian National University, Centre for Mathematical Analysis, Canberra, 1983. vii+272 pp.Google Scholar
Sudakov, V. N.. Geometric problems in the theory of infinite-dimensional probability distributions. Proc. Steklov Inst. Math., (2):i–v, 1178, 1979. Cover to cover translation of Trudy Mat. Inst. Steklov 141 (1976).Google Scholar
Talenti, G.. Elliptic equations and rearrangements. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 3(4):697718, 1976.Google Scholar
Trudinger, N. S. and Wang, X.-J.. On the Monge mass transfer problem. Calc. Var. Partial Differ. Equ., 13(1):1931, 2001.Google Scholar
Villani, C.. Topics in optimal transportation, volume 58 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2003. xvi+370 pp.Google Scholar
Villani, C.. Optimal transport, volume 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 2009. xxii+973 pp. Old and new.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Francesco Maggi, University of Texas, Austin
  • Book: Optimal Mass Transport on Euclidean Spaces
  • Online publication: 02 November 2023
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Francesco Maggi, University of Texas, Austin
  • Book: Optimal Mass Transport on Euclidean Spaces
  • Online publication: 02 November 2023
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Francesco Maggi, University of Texas, Austin
  • Book: Optimal Mass Transport on Euclidean Spaces
  • Online publication: 02 November 2023
Available formats
×