Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-19T09:33:17.369Z Has data issue: false hasContentIssue false

20 - Statistical physics

from Part III - Applications

Published online by Cambridge University Press:  05 December 2015

Philip H. Jones
Affiliation:
University College London
Onofrio M. Maragò
Affiliation:
Istituto per i Processi Chimico-Fisici, Consiglio Nazionale delle Ricerche (CNR-IPCF), Italy
Giovanni Volpe
Affiliation:
Bilkent University, Ankara
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Optical Tweezers
Principles and Applications
, pp. 448 - 461
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Babiú, D., Schmitt, C., and Bechinger, C. 2005. Colloids as model systems for problems in statistical physics. Chaos, 15, 026114.Google Scholar
Bechinger, C., Brunner, M., and Leiderer, P. 2001. Phase behavior of two-dimensional colloidal systems in the presence of periodic light fields. Phys. Rev. Lett., 86, 930–33.CrossRefGoogle ScholarPubMed
Benzi, R., Sutera, A., and Vulpiani, A. 1981. The mechanism of stochastic resonance. J. Phys. A Math. Gen., 14, L453–L457.CrossRefGoogle Scholar
Benzi, R., Parisi, G., Sutera, A., and Vulpiani, A. 1982. Stochastic resonance in climatic change. Tellus, 34, 10–16.CrossRefGoogle Scholar
Brettschneider, T., Volpe, G., Helden, L.,Wehr, J., and Bechinger, C. 2011. Force measurement in the presence of Brownian noise: Equilibrium-distribution method versus drift method. Phys. Rev. E, 83, 041113.CrossRefGoogle ScholarPubMed
Burns, M. M., Fournier, J.-M., and Golovchenko, J. A. 1990. Optical matter: Crystallization and binding in intense optical fields. Science, 249, 749–54.CrossRefGoogle ScholarPubMed
Faucheux, L. P., Bourdieu, L. S., Kaplan, P. D., and Libchaber, A. J. 1995. Optical thermal ratchet. Phys. Rev. Lett., 74, 1504–7.CrossRefGoogle ScholarPubMed
Franosch, T., Grimm, M., Belushkin, M., et al. 2011. Resonances arising from hydrodynamic memory in Brownian motion. Nature, 478, 85–8.CrossRefGoogle ScholarPubMed
Frenkel, D. 2002. Soft condensed matter. Physica A, 313, 1–31.CrossRefGoogle Scholar
Gammaitoni, L., Hänggi, P., Jung, P., and Marchesoni, F. 1998. Stochastic resonance. Rev. Mod. Phys., 70, 223–87.CrossRefGoogle Scholar
Greinert, N., Wood, T., and Bartlett, P. 2006. Measurement of effective temperatures in an aging colloidal glass. Phys. Rev. Lett., 97, 265702.CrossRefGoogle Scholar
Kramers, H. A. 1940. Brownian motion in a field of force and the diffusion model of chemical reactions. Physica, 7, 284–304.CrossRefGoogle Scholar
Lançon, P., Batrouni, G., Lobry, L., and Ostrowsky, N. 2001. Drift without flux: Brownian walker with a space-dependent diffusion coefficient. Europhys. Lett., 54, 28–34.CrossRefGoogle Scholar
Lee, S.-H., and Grier, D. G. 2006. Giant colloidal diffusivity on corrugated optical vortices. Phys. Rev. Lett., 96, 190601.CrossRefGoogle ScholarPubMed
MacDonald, M. P., Spalding, G. C., and Dholakia, K. 2003. Microfluidic sorting in an optical lattice. Nature, 426, 421–4.CrossRefGoogle Scholar
McCann, L. I., Dykman, M., and Golding, B. 1999. Thermally activated transitions in a bistable three-dimensional optical trap. Nature, 402, 785–7.CrossRefGoogle Scholar
Mikhael, J., Roth, J., Helden, L., and Bechinger, C. 2008. Archimedean-like tiling on decagonal quasicrystalline surfaces. Nature, 454, 501–4.CrossRefGoogle ScholarPubMed
Roichman, Y., and Grier, D. 2005. Holographic assembly of quasicrystalline photonic heterostructures. Opt. Express, 13, 5434–9.CrossRefGoogle ScholarPubMed
Schmitt, C., Dybiec, B., Hänggi, P., and Bechinger, C. 2006. Stochastic resonance vs. resonant activation. Europhys. Lett., 74, 937–43.CrossRefGoogle Scholar
Simon, A., and Libchaber, A. 1992. Escape and synchronization of a Brownian particle. Phys. Rev. Lett., 68, 3375–8.CrossRefGoogle ScholarPubMed
Stilgoe, A. B., Heckenberg, N. R., Nieminen, T. A., and Rubinsztein-Dunlop, H. 2011. Phase-transition-like properties of double-beam optical tweezers. Phys. Rev. Lett., 107, 248101.CrossRefGoogle ScholarPubMed
Volpe, G., Perrone, S., Rubi, J. M., and Petrov, D. 2008. Stochastic resonant damping in a noisy monostable system: Theory and experiment. Phys. Rev. E, 77, 051107.CrossRefGoogle Scholar
Volpe, G., Helden, L., Brettschneider, T., Wehr, J., and Bechinger, C. 2010. Influence of noise on force measurements. Phys. Rev. Lett., 104, 170602.CrossRefGoogle ScholarPubMed
Volpe, G., Volpe, G., and Gigan, S. 2014. Brownian motion in a speckle light field: Tunable anomalous diffusion and selective optical manipulation. Sci. Rep., 4, 3936.CrossRefGoogle Scholar
Xiao, K., and Grier, D. G. 2010. Multidimensional optical fractionation of colloidal particles with holographic verification. Phys. Rev. Lett., 104, 028302.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×