Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-19T09:35:39.042Z Has data issue: false hasContentIssue false

23 - Nanostructures

from Part III - Applications

Published online by Cambridge University Press:  05 December 2015

Philip H. Jones
Affiliation:
University College London
Onofrio M. Maragò
Affiliation:
Istituto per i Processi Chimico-Fisici, Consiglio Nazionale delle Ricerche (CNR-IPCF), Italy
Giovanni Volpe
Affiliation:
Bilkent University, Ankara
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Optical Tweezers
Principles and Applications
, pp. 484 - 497
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agarwal, R., Ladavac, K., Roichman, Y., et al. 2005. Manipulation and assembly of nanowires with holographic optical traps. Opt. Express, 13, 8906–12.CrossRefGoogle ScholarPubMed
Ashkin, A., Dziedzic, J.M., Bjorkholm, J.E., and Chu, S. 1986. Observation of a single-beam gradient optical trap for dielectric particles. Opt. Lett., 11, 288–90.CrossRefGoogle ScholarPubMed
Baffou, G., and Quidant, R. 2013. Thermo-plasmonics: Using metallic nanostructures as nano-sources of heat. Laser Photon. Rev., 7, 171–87.CrossRefGoogle Scholar
Bálint, S., Kreuzer, M. P., Rao, S., et al. 2009. Simple route for preparing optically trappable probes for surface-enahnced Raman scattering. J. Phys. Chem. C, 113, 17 724–9.CrossRefGoogle Scholar
Bareil, P. B., and Sheng, Y. 2010. Angular and position stability of a nanorod trapped in an optical tweezers. Opt. Express, 18, 26 388–98.CrossRefGoogle Scholar
Barker, P. F., and Shneider, M. N. 2010. Cavity cooling of an optically trapped nanoparticle. Phys. Rev. A, 81, 023826.CrossRefGoogle Scholar
Bjerneld, E. J., Svedberg, F., and Käll, M. 2003. Laser-induced growth and deposition of noble-metal nanoparticles for surface-enhanced Raman scattering. Nano Lett., 3, 593–6.CrossRefGoogle Scholar
Bonaccorso, F., Hasan, T., Tan, P. H., et al. 2010. Density gradient ultracentrifugation of nanotubes: Interplay of bundling and surfactants encapsulation. J. Phys. Chem C, 114, 17 267–85.CrossRefGoogle Scholar
Borghese, F., Denti, P., Saija, R., Iatì, M. A., and Maragò, O. M. 2008. Radiation torque and force on optically trapped linear nanostructures. Phys. Rev. Lett., 100, 163903.CrossRefGoogle ScholarPubMed
Bosanac, L., Aabo, T., Bendix, P. M., and Oddershede, L. B. 2008. Efficient optical trapping and visualization of silver nanoparticles. Nano Lett., 8, 1486–91.CrossRefGoogle ScholarPubMed
Castro-Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S., and Geim, A. K. 2009. The electronic properties of graphene. Rev. Mod. Phys., 81, 109–62.CrossRefGoogle Scholar
Chang, D. E., Regal, C.A., Papp, S. B., et al. 2010. Cavity opto-mechanics using an optically levitated nanosphere. Proc. Natl. Acad. Sci. U.S.A., 107, 1005–10.CrossRefGoogle ScholarPubMed
Chen, Y.-F., Serey, X., Sarkar, R., Chen, P., and Erickson, D. 2012. Controlled photonic manipulation of proteins and other nanomaterials. Nano Lett., 12, 1633–7.CrossRefGoogle ScholarPubMed
Dienerowitz, M., Mazilu, M., Reece, P. J., Krauss, T. F., and Dholakia, K. 2008. Optical vortex trap for resonant confinement of metal nanoparticles. Opt. Express, 16, 4991–9.CrossRefGoogle ScholarPubMed
Donato, M. G., Vasi, S., Sayed, R., et al. 2012. Optical trapping of nanotubes with cylindrical vector beams. Opt. Lett., 37, 3381–3.CrossRefGoogle ScholarPubMed
Dufresne, E. R., and Grier, D. G. 1998. Optical tweezer arrays and optical substrates created with diffractive optics. Rev. Sci. Instrumen., 69, 1974–7.CrossRefGoogle Scholar
Dutto, F., Raillon, C., Schenk, K., and Radenovic, A. 2011. Nonlinear optical response in single alkaline niobate nanowires. Nano Lett., 11, 2517–21.CrossRefGoogle ScholarPubMed
Geim, A. K., and Novoselov, K. S. 2007. The rise of graphene. Nature Mater., 6, 183–91.CrossRefGoogle ScholarPubMed
Geiselmann, M., Juan, M. L., Renger, J., et al. 2013. Three-dimensional optical manipulation of a single electron spin. Nature Nanotechnol., 8, 175–9.CrossRefGoogle ScholarPubMed
Gieseler, J., Deutsch, B., Quidant, R., and Novotny, L. 2012. Subkelvin parametric feedback cooling of a laser-trapped nanoparticle. Phys. Rev. Lett., 109, 103603.CrossRefGoogle ScholarPubMed
Guffey, M. J., and Scherer, N. F. 2010. All-optical patterning ofAu nanoparticles on surfaces using optical traps. Nano Lett., 10, 4302–8.CrossRefGoogle Scholar
Hajizadeh, F., and Reihani, S. N. S. 2010. Optimized optical trapping of gold nanoparticles. Opt. Express, 18, 551–9.CrossRefGoogle ScholarPubMed
Hansen, P. M., Bhatia, V. K., Harrit, N., and Oddershede, L. 2005. Expanding the optical trapping range of gold nanoparticles. Nano Lett., 5, 1937–42.CrossRefGoogle ScholarPubMed
Iijima, S. 1991. Helical microtubules of graphitic carbon. Nature, 354, 56–8.CrossRefGoogle Scholar
Ikin, L., Carberry, D. M., Gibson, G. M., Padgett, M. J., and Miles, M. J. 2009. Assembly and force measurement with SPM-like probes in holographic optical tweezers. New J. Phys., 11, 023012.CrossRefGoogle Scholar
Irrera, A., Artoni, P., Saija, R., et al. 2011. Size-scaling in optical trapping of silicon nanowires. Nano Lett., 11, 4879–84.CrossRefGoogle ScholarPubMed
Irrera, A., Artoni, P., Iacona, I., et al. 2012. Quantum confinement and electroluminescence in ultrathin silicon nanowires fabricated by a maskless etching technique. Nanotechnol., 23, 075204.CrossRefGoogle ScholarPubMed
Ito, S., Yoshikawa, H., and Masuhara, H. 2001. Optical patterning and photochemical fixation of polymer nanoparticles on glass substrates. Appl. Phys. Lett., 78, 2566–8.CrossRefGoogle Scholar
Jauffred, L., Richardson, A. C., and Oddershede, L. B. 2008. Three-dimensional optical control of individual quantum dots. Nano Lett., 8, 3376–80.CrossRefGoogle ScholarPubMed
Jones, P. H., Palmisano, F., Bonaccorso, F., et al. 2009. Rotation detection in light-driven nanorotors. ACS Nano, 3, 3077–84.CrossRefGoogle ScholarPubMed
Kyrsting, A., Bendix, P. M., Stamou, D. G., and Oddershede, L. B. 2011. Heat profiling of three-dimensionally optically trapped gold nanoparticles using vesicle cargo release. Nano Lett., 11, 888–92.CrossRefGoogle ScholarPubMed
Lee, S.-W., Jo, G., Lee, T., and Lee, Y.-G. 2009. Controlled assembly of In2O3 nanowires on electronic circuits using scanning optical tweezers. Opt. Express, 17, 17 491–501.Google ScholarPubMed
Ma, H., Bendix, P. M., and Oddershede, L. B. 2012. Large-scale orientation dependent heating from a single irradiated gold nanorod. Nano Lett., 12, 3954–60.CrossRefGoogle ScholarPubMed
Maragò, O. M., Jones, P. H., Bonaccorso, F., et al. 2008a. Femtonewton force sensing with optically trapped nanotubes. Nano Lett., 8, 3211–16.CrossRefGoogle ScholarPubMed
Maragò, O. M., Bonaccorso, F., Saija, R., et al. 2010. Brownian motion of graphene. ACS Nano, 4, 7515–23.CrossRefGoogle ScholarPubMed
Maragò, O. M., Jones, P. H., Gucciardi, P. G., Volpe, G. V., and Ferrari, A. C. 2013. Optical trapping and manipulation of nanostructures. Nature Nanotechnol., 8, 807–19.CrossRefGoogle ScholarPubMed
Maragò, O.M., Gucciardi, P. G., Bonaccorso, F., et al. 2008b. Optical trapping of carbon nanotubes. Physica E, 40, 2347–51.CrossRefGoogle Scholar
McLeod, E., and Arnold, C. B. 2008. Subwavelength direct-write nanopatterning using optically trapped microspheres. Nature Nanotechnol., 3, 413–17.CrossRefGoogle ScholarPubMed
Messina, E., Cavallaro, E., Cacciola, A., et al. 2011a. Manipulation and Raman spectroscopy with optically trapped metal nanoparticles obtained by pulsed laser ablation in liquids. J. Phys. Chem. C, 115, 5115–22.CrossRefGoogle Scholar
Messina, E., Cavallaro, E., Cacciola, A., et al. 2011b. Plasmon-enhanced optical trapping of gold nanoaggregates with selected optical properties. ACS Nano, 5, 905–13.CrossRefGoogle ScholarPubMed
Mitin, V. V., Kochelap, V., and Stroscio, M. A. 1999. Quantum heterostructures:Microelectronics and optoelectronics. Cambridge, UK: Cambridge University Press.Google Scholar
Nakayama, Y., Pauzauskie, P. J., Radenovic, A., et al. 2007. Tunable nanowire nonlinear optical probe. Nature, 447, 1098–1101.CrossRefGoogle ScholarPubMed
Nedev, S., Urban, A. S., Lutich, A. A., and Feldmann, J. 2011. Optical force stamping lithography. Nano Lett., 11, 5066–70.CrossRefGoogle ScholarPubMed
Neuman, K. C., and Nagy, A. 2008. Single-molecule force spectroscopy: Optical tweezers, magnetic tweezers and atomic force microscopy. Nature Methods, 5, 491–505.CrossRefGoogle ScholarPubMed
Neves, A. A. R., Camposeo, A., Pagliara, S., et al. 2010. Rotational dynamics of optically trapped nanofibers. Opt. Express, 18, 822–30.CrossRefGoogle ScholarPubMed
Novoselov, K. S., Geim, A. K., Morozov, S. V., et al. 2004. Electric field effect in atomically thin carbon films. Science, 306, 666–9.CrossRefGoogle ScholarPubMed
Olof, S. N., Grieve, J. A., Phillips, D. B., et al. 2012. Measuring nanoscale forces with living probes. Nano Lett., 12, 6018–23.CrossRefGoogle ScholarPubMed
Pauzauskie, P. J., Radenovic, A., Trepagnier, E., et al. 2006. Optical trapping and integration of semiconductor nanowire assemblies in water. Nature Mater., 5, 97–101.CrossRefGoogle ScholarPubMed
Pauzauskie, P. J., Jamshidi, A., Valley, J. K., Satcher, J. H., and Wu, M. C. 2009. Parallel trapping of multiwalled carbon nanotubes with optoelectronic tweezers. Appl. Phys. Lett., 95, 113104.CrossRefGoogle ScholarPubMed
Pelton, M., Liu, M., Kim, H. Y., et al. 2006. Optical trapping and alignment of single gold nanorods by using plasmon resonances. Opt. Lett., 31, 2075–7.CrossRefGoogle ScholarPubMed
Phillips, D. B., Grieve, J. A., Olof, S. N., et al. 2011. Surface imaging using holographic optical tweezers. Nanotechnol., 22, 285503.CrossRefGoogle ScholarPubMed
Phillips, D. B., Simpson, S. H., Grieve, J. A., et al. 2012a. Force sensing with a shaped dielectric micro-tool. Europhys. Lett., 99, 58004.CrossRefGoogle Scholar
Phillips, D. B., Gibson, G. M., Bowman, R., et al. 2012b. An optically actuated surface scanning probe. Opt. Express, 20, 29679.CrossRefGoogle ScholarPubMed
Ploschner, M., Cizmar, T., Mazilu, M., Di Falco, A., and Dholakia, K. 2012. Bidirectional optical sorting of gold nanoparticles. Nano Lett., 12, 1923–27.CrossRefGoogle ScholarPubMed
Pollard, M. R., Botchway, S. W., Chichkov, B., et al. 2010. Optically trapped probes with nanometer-scale tips for femto-Newton force measurement. New J. Phys., 12, 113056.CrossRefGoogle Scholar
Rao, S., Raj, S., Balint, S., et al. 2010. Single DNA molecule detection in an optical trap using surface-enhanced Raman scattering. Appl. Phys. Lett., 96, 213701.CrossRefGoogle Scholar
Reece, P. J., Paiman, S., Abdul-Nabi, O., et al. 2009. Combined optical trapping and microphotoluminescence of single InP nanowires. Appl. Phys. Lett., 95, 101109.CrossRefGoogle Scholar
Reece, P. J., Toe, W. J., Wang, F., et al. 2011. Characterization of semiconductor nanowires based on optical tweezers. Nano Lett., 11, 2375–81.CrossRefGoogle Scholar
Rodgers, T., Shoji, S., Sekkat, Z., and Kawata, S. 2008. Selective aggregation of singlewalled carbon nanotubes using the large optical field gradient of a focused laser beam. Phys. Rev. Lett., 101, 127402.CrossRefGoogle Scholar
Rohrbach, A., Tischer, C., Neumayer, D., Florin, E.-L., and Stelzer, E. H. K. 2004. Trapping and tracking a local probe with a photonic force microscope. Rev. Sci. Instrum., 75, 2197–210.CrossRefGoogle Scholar
Romero-Isart, O., Juan, M. L., Quidant, R., and Cirac, J. I. 2010. Toward quantum superposition of living organisms. New J. Phys., 12, 033015.CrossRefGoogle Scholar
Saija, R., Denti, P., Borghese, F., Maragò, O. M., and Iatì, M. A. 2009. Optical trapping calculations for metal nanoparticles: Comparison with experimental data for Au and Ag spheres. Opt. Express, 17, 10 231–41.CrossRefGoogle ScholarPubMed
Selhuber-Unkel, C., Zins, I., Schubert, O., Sönnichsen, C., and Oddershede, L. B. 2008. Quantitative optical trapping of single gold nanorods. Nano Lett., 8, 2998–3003.CrossRefGoogle ScholarPubMed
Seol, Y., Carpenter, A. E., and Perkins, T. T. 2006. Gold nanoparticles: Enhanced optical trapping and sensitivity coupled with significant heating. Opt. Lett., 31, 2429–31.CrossRefGoogle ScholarPubMed
Simpson, S. H., and Hanna, S. 2011. Application of the discrete dipole approximation to optical trapping calculations of inhomogeneous and anisotropic particles. Opt. Express, 19, 16 526–41.CrossRefGoogle ScholarPubMed
Svedberg, F., Li, Z., Xu, H., and Käll, M. 2006. Creating hot nanoparticle pairs for surfaceenhanced Raman spectroscopy through optical manipulation. Nano Lett., 6, 2639–41.CrossRefGoogle Scholar
Svoboda, K., and Block, S. M. 1994. Optical trapping of metallic Rayleigh particles. Opt. Lett., 19, 930–32.CrossRefGoogle ScholarPubMed
Tan, S., Lopez, H. A., Cai, C. W., and Zhang, Y. 2004. Optical trapping of single-walled carbon nanotubes. Nano Lett., 4, 1415–19.CrossRefGoogle Scholar
Tong, L., Miljkovic, V. D., and Käll, M. 2010. Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces. Nano Lett., 10, 268–73.CrossRefGoogle ScholarPubMed
Tong, L., Miljković, V. D., Johansson, P., and Käll, M. 2011. Plasmon hybridization reveals the interaction between individual colloidal gold nanoparticles confined in an optical potential well. Nano Lett., 11, 4505–8.CrossRefGoogle Scholar
Toussaint, K. C., Liu, M., Pelton, M., et al. 2007. Plasmon resonance-based optical trapping of single and multiple Au nanoparticles. Opt. Express, 15, 12 017–29.CrossRefGoogle ScholarPubMed
Tsai, Y.-C., Leitz, K.-H., Fardel, R., et al. 2012. Parallel optical trap assisted nanopatterning on rough surfaces. Nanotechnol., 23, 165304.CrossRefGoogle ScholarPubMed
Twombly, C.W., Evans, J. S., and Smalyukh, I. I. 2013. Optical manipulation of self-aligned graphene flakes in liquid crystals. Opt. Express, 21, 1324–34.CrossRefGoogle ScholarPubMed
Urban, A. S., Carretero-Palacios, S., Lutich, A. A., et al. 2014. Optical trapping and manipulation of plasmonic nanoparticles: Fundamentals, applications, and perspectives. Nanoscale, 6, 4458–74.CrossRefGoogle Scholar
Wang, F., Reece, P. J., Paiman, S., et al. 2011. Nonlinear optical processes in optically trapped InP nanowires. Nano Lett., 11, 4149–53.CrossRefGoogle ScholarPubMed
Wang, F., Toe, W. J., Lee, W. M., et al. 2013. Resolving stable axial trapping points of nanowires in an optical tweezers using photoluminescence mapping. Nano Lett., 13, 1185–91.Google Scholar
Woerdemann, M., Gläsener, S., Hörner, F., et al. 2010. Dynamic and reversible organization of zeolite L crystals induced by holographic optical tweezers. Adv. Mater., 22, 4176–9.CrossRefGoogle ScholarPubMed
Wright, W. H., Sonek, G. J., and Berns, M. W. 1993. Radiation trapping forces on microspheres with optical tweezers. Appl. Phys. Lett., 63, 715–17.CrossRefGoogle Scholar
Yan, Z., Jureller, J. E., Sweet, J., et al. 2012. Three-dimensional optical trapping and manipulation of single silver nanowires. Nano Lett., 12, 5155–61.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×