Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-09T06:31:37.944Z Has data issue: false hasContentIssue false

3 - Causality, quantum theory and cosmology

Published online by Cambridge University Press:  05 August 2013

Roger Penrose
Affiliation:
University of Oxford
Shahn Majid
Affiliation:
Queen Mary University of London
Get access

Summary

SPACETIME STRUCTURE

Einstein's general theory of relativity gives a mathematical description of space, time and gravitation which is extraordinarily concise, subtle and accurate. It has, however, the appearance of being concise only to those who are already familiar with the mathematical formalism of Riemannian geometry. To someone who is not familiar with that body of mathematical theory – a theory which, though remarkably elegant, is undoubtedly sophisticated, and usually becomes extremely complicated in detailed application – Einstein's General Relativity can seem inaccessible and bewildering in its elaborate structure. But the complication and sophistication lie only in the details of the formalism. Once that mathematics has been mastered, the precise formulation of Einstein's physical theory is, indeed, extremely compact and natural. Although a little of this formalism will be needed here, it will be given in a compact form only that should be reasonably accessible.

The mathematical theory of Riemannian geometry applies to smooth spaces of any (positive whole) number N of dimensions. Such a space M is referred to as an N-manifold, and to be a Riemannian manifold it must be assigned a metric, frequently denoted by g, which assigns a notion of ‘length’ to any smooth curve in M connecting any two points a, b. (See Figure 3.1.) For a strictly Riemannian manifold, this length function is what is called positive definite which means that the length of any such curve is a positive number, except in the degenerate situation when a = b and the curve shrinks to a point, for which the length would be zero.

Type
Chapter
Information
On Space and Time , pp. 141 - 195
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×