Book contents
- Frontmatter
- Contents
- Preface
- Acknowledgments
- Symbols
- Abbreviations
- 1 Introduction
- 2 Environmental Conditions
- 3 Wave Theories
- 4 Wave and Current Loads on Slender Bodies
- 5 Flow-Induced Instabilities
- 6 Large Bodies: Linear Theory
- 7 Large Bodies: Second-Order Effects
- 8 Large Bodies: Other Nonlinear Effects
- 9 Model Testing
- Appendix A: Introduction to Potential Flow Theory
- Appendix B: Hydrostatics
- Appendix C: Damped Mass Spring System
- Appendix D: The Boundary Integral Equation Method
- Author Index
- Subject Index
- References
6 - Large Bodies: Linear Theory
Published online by Cambridge University Press: 31 January 2023
- Frontmatter
- Contents
- Preface
- Acknowledgments
- Symbols
- Abbreviations
- 1 Introduction
- 2 Environmental Conditions
- 3 Wave Theories
- 4 Wave and Current Loads on Slender Bodies
- 5 Flow-Induced Instabilities
- 6 Large Bodies: Linear Theory
- 7 Large Bodies: Second-Order Effects
- 8 Large Bodies: Other Nonlinear Effects
- 9 Model Testing
- Appendix A: Introduction to Potential Flow Theory
- Appendix B: Hydrostatics
- Appendix C: Damped Mass Spring System
- Appendix D: The Boundary Integral Equation Method
- Author Index
- Subject Index
- References
Summary
In this chapter linearized potential flow theory is applied to the prediction of wave loads upon marine structures, and of their wave response. The linearized diffraction radiation theory is presented, leading to the wave excitation loads, added masses, and radiation dampings. Analytical, semi-analytical, and numerical methods of resolution are given, the first one for the case of one or several bottom-mounted vertical cylinders. Comparisons are offered with experimental results, where the merits and short-comings of the linearized theory are emphasized. Separate sections are then devoted to specific problems such as barge roll resonance, recovery of wave energy, coupling between seakeeping and sloshing in tanks, and resonances in moonpools and gaps.
Keywords
- Type
- Chapter
- Information
- Offshore Structure Hydrodynamics , pp. 158 - 218Publisher: Cambridge University PressPrint publication year: 2023