Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-05T16:21:57.217Z Has data issue: false hasContentIssue false

4 - Knowledge and implications of global change in the oceans for biology, ecology, and ecosystem services

Published online by Cambridge University Press:  05 May 2015

Roberto Danovaro
Affiliation:
Polytechnic University Marche
Cristina Gambi
Affiliation:
Polytechnic University of Marche
Cinzia Corinaldesi
Affiliation:
Polytechnic University of Marche
Salvatore Aricò
Affiliation:
United Nations Educational, Scientific and Cultural Organization (UNESCO), France
Get access

Summary

4.1 Introduction

There is an increasing awareness that the Earth is changing, but it is still unknown whether these changes occur cyclically, stochastically, episodically, or are long-term trends. The contemporary global climate change is a reality and a result of human activities that annually release gigatonnes of carbon into the Earth's atmosphere (IPCC, 2007; Hansen et al., 2007). Direct consequences of cumulative post-industrial emissions include increasing global temperature, perturbed regional weather patterns, rising sea levels, acidifying oceans, decreasing oxygen concentration, changed nutrient loads, and altered ocean circulation (Brierley and Kingsford, 2009). All of these factors cause climate change to have different effects on marine ecosystems, their function, biodiversity, and on the goods and services that they can provide. These contribute to human welfare, both directly and indirectly, and represent part of the total economic value of the planet (Costanza et al., 1997); therefore, the loss of these goods and services has important social and economic implications. Also deepsea ecosystems, which have long been thought to be extremely stable in terms of physico-chemical conditions, may experience abrupt change and climate-driven temperature shifts as a direct consequence of the prevailing surface climate conditions (Smith et al., 2009; Masuda et al., 2010; Fahrbach et al., 2011). Contemporary climate change has the potential to perturb ocean circulation on a time-scale far shorter than that of continental drift. For example, a reduction in the North Atlantic Current could have major implications for northern Europe and beyond during this century (Cunningham et al., 2007). This emphasizes the importance of regional considerations versus global generalization of the ‘global warming’ paradigm (Brierley and Kingsford, 2009). Climate-induced changes strongly differ across the globe, especially along a latitudinal gradient. Warming appears more pronounced at the poles than at the equator, and the responses of climate change are expected to differ for different marine habitats (Hoegh-Guldberg and Bruno, 2010; McGinty et al. 2011). For example, whilst open oceans are more affected by the in fluence of wind on the timing and strength of stratification, coastal areas are expected to be more vulnerable to the effects of wind due to storms.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agius, B. P. (2007). Spatial and temporal effects of pre-seeding plates with invasive ascidians: Growth, recruitment and community composition. Journal of Experimental Marine Biology and Ecology 342: 30–39.CrossRefGoogle Scholar
Airoldi, L. and Beck, M. W. (2007). Loss, status and trends for coastal marine habitats of Europe. Oceanography and Marine Biology: An Annual Review 45: 345–405.Google Scholar
Airoldi, L., Abbiati, M., Beck, M. W., et al. (2005). An ecological perspective on the deployment and design of low-crested and other hard coastal defense structures. Coastal Engineering 52: 1073–1087.CrossRefGoogle Scholar
Allison, E. H., Perry, A. L., Adger, W. N., et al. (2009). Vulnerability of national economies to the impacts of climate change on fisheries. Fish and Fisheries 10(2): 173–196.CrossRefGoogle Scholar
Alongi, D. M. (2008). Mangrove forests: Resilience, protection from tsunamis, and responses to global climate change. Estuarine, Coastal and Shelf Science 76(1): 1–13.CrossRefGoogle Scholar
Anderson, J. M., Åberg, P., Hawkins, S. J., et al. (2005) Low-crested coastal defence structures as artificial habitats for marine life: Using ecological criteria in design. Coastal Engineering 52: 1053–1071.Google Scholar
Barange, M., Heip, C., and Meysman, F. (2011). Biological impacts. In: Climate Change and Marine Ecosystem Research. Synthesis of European Research on the Effects of Climate Change on Marine Environments. Marine Board Special Report, 65−79. European Union Framework Programme 7.
Battershill, C. N., Jaspars, M., and Long, P. F. (2005). Marine biodiscovery: New drugs from the ocean depths. Biologist 52: 107–114.Google Scholar
Bellwood, D. R., Hughes, T. P., Folke, C., and Nystrom, M. (2004). Confronting the coral crisis. Nature 429: 827–833.CrossRefGoogle ScholarPubMed
Billett, D. S. M., Bett, B. J., Rice, A. L., et al. (2001). Long-term change in the megabenthos of the Porcupine Abyssal Plain (NE Atlantic). Progress in Oceanography 50: 325–348.CrossRefGoogle Scholar
Billett, D. S. M., Bett, B. J., Reid, W. D. K., et al. (2010). Long-term change in the abyssal NE Atlantic: The Amperima Event revisited. Deep-Sea Research II 57: 1406–1417.CrossRefGoogle Scholar
Bopp, L., Monfray, P., Aumont, O., et al. (2001). Potential impact of climate change on marine export production. Global Biogeochemical Cycles 15: 81–99.CrossRefGoogle Scholar
Brierley, A. S. and Kingsford, M. J. (2009). Impacts of climate change on marine organisms and ecosystems. Current Biology 19: 602–614.CrossRefGoogle ScholarPubMed
Burcharth, H. F., Hawkins, S. J., Zanuttigh, B., and Lamberti, A. (2007). Environmental Design Guidelines for Low Crested Coastal Structures. Oxford: Elsevier, 395 pp.Google Scholar
Byers, J. E. and Pringle, J. M. (2006). Going against the flow: Retention, range limits and invasions in advective environments. Marine Ecology Progress Series 313: 27−41.CrossRefGoogle Scholar
Caldeira, K. and Wickett, M. E. (2003). Anthropogenic carbon and ocean pH. Nature 425: 365.CrossRefGoogle ScholarPubMed
Canals, M., Puig, P., Durrieu de Madron, X., et al. (2006). Flushing submarine canyons. Nature 444: 354–357.CrossRefGoogle ScholarPubMed
Canals, M., Danovaro, R., Heussner, S., et al. (2009). Cascades in Mediterranean submarine grand canyons. Oceanography 22: 26–43.CrossRefGoogle Scholar
Cerrano, C., Bavestrello, G., Bianchi, C. N., et al. (2000). A catastrophic mass-mortality episode of gorgonians and other organisms in the Ligurian Sea (north-western Mediterranean), summer 1999. Ecology Letters 3: 284–293.CrossRefGoogle Scholar
Cheung, W., Vicky, W. L., Lam, W. Y., et al. (2009). Projecting global marine biodiversity impacts under climate change scenarios. Fish and Fisheries 10(3): 235–251.CrossRefGoogle Scholar
Company, J. B., Puig, P., Sardà, F., et al. (2008). Climate influence on deep sea populations. PLoS ONE 3(1): e1431.CrossRefGoogle ScholarPubMed
Connell, S. D. and Russell, B. D. (2010). The direct effects of increasing CO2 and temperature on non-calcifying organisms: Increasing the potential for phase shifts in kelp forests. Proceedings of Royal Society Part B: Biological Sciences 277: 1409–1415.Google ScholarPubMed
Costanza, R., d'Arge, R., deGroot, R., et al. (1997). The value of the world's ecosystem services and natural capital. Nature 387: 253–260.CrossRefGoogle Scholar
Costello, M. J., Coll, M., Danovaro, R., et al. (2010). A census of marine biodiversity knowledge, resources, and future challenges. PLoS ONE 5(8): e12110.CrossRefGoogle ScholarPubMed
Cunningham, S. A., Kanzow, T., Rayner, D., et al. (2007). Temporal variability of the Atlantic meridional overturning circulation at 26.5 degrees N. Science 317: 935–938.CrossRefGoogle ScholarPubMed
Dahdouh-Guebas, F., Jayatissa, L. P., Di Nitto, D., et al. (2005a). How effective were mangroves as a defense against the recent tsunami?Current Biology 15: 443–447.CrossRefGoogle Scholar
Dahdouh-Guebas, F., Hettiarachchi, S., Lo Seen, D., et al. (2005b). Transitions in ancient inland freshwater resource management in Sri Lanka affect biota and human populations in and around coastal lagoons. Current Biology 15: 579–586.CrossRefGoogle ScholarPubMed
Dahdouh-Guebas, F., Koedam, N., Danielsen, F., et al. (2006). Coastal vegetation and the Asian tsunami. Science 311: 37–38.CrossRefGoogle ScholarPubMed
Danovaro, R., Dell'Anno, A., Fabiano, M., et al. (2001). Deep-sea ecosystem response to climate changes: The eastern Mediterranean case study. Trends in Ecology and Evolution 16: 505–510.CrossRefGoogle Scholar
Danovaro, R., Dell'Anno, A., and Pusceddu, A. (2004). Biodiversity response to climate change in a warm deep sea. Ecology Letters 7: 821–828.CrossRefGoogle Scholar
Danovaro, R., Armeni, M., Luna, G. M., et al. (2005). Exo-enzymatic activities and dissolved organic pools in relation with mucilage development in the Northern Adriatic Sea. Science of the Total Environment 353: 189–203.CrossRefGoogle ScholarPubMed
Danovaro, R., Gambi, C., Dell'Anno, A., et al. (2008a). Exponential decline of deep-sea ecosystem functioning linked to benthic biodiversity loss. Current Biology 18: 1–8.CrossRefGoogle ScholarPubMed
Danovaro, R., Dell'Anno, A., Corinaldesi, C., et al. (2008b). Major viral impact on the functioning of benthic deep-sea ecosystems. Nature 454: 1084–1087.CrossRefGoogle ScholarPubMed
Danovaro, R., Fonda Umani, S., and Pusceddu, A. (2009). Climate change and the potential spreading of marine mucilage and microbial pathogens in the Mediterranean Sea. PLoS ONE 4(9): e7006.CrossRefGoogle ScholarPubMed
Danovaro, R., Company, J. B., Corinaldesi, C., et al. (2010). Deep-sea biodiversity in the Mediterranean Sea: The known, the unknown, and the unknowable. PLoS ONE 5: e11832.CrossRefGoogle ScholarPubMed
Danovaro, R., Corinaldesi, C., Dell'Anno, A., et al. (2011). Marine viruses and global climate change. FEMS Microbiology Reviews 35(6): 993–1034.CrossRefGoogle ScholarPubMed
Degobbis, D., Fonda Umani, S., Franco, P., et al. (1995). Changes in the northern Adriatic ecosystem and hypertrophic appearance of gelatinous aggregates. Science of the Total Environment 165: 43–58.CrossRefGoogle Scholar
Doney, S. C. 2010. The growing human footprint on coastal and open-ocean biogeochemistry. Science 328: 1512.CrossRefGoogle ScholarPubMed
Doney, S. C. and Schimel, D. S. (2007). Carbon and climate system coupling on timescales from the Precambrian to the Anthropocene. Annual Review of Environmental Resources 32: 31–66.CrossRefGoogle Scholar
Duarte, C. M. (2002). The future of seagrass meadows. Environmental Conservation 29(2): 192−206.CrossRefGoogle Scholar
Dulvy, N. K., Sadovy, Y., and Reynolds, J. D. (2003). Extinction vulnerability in marine populations. Fish and Fisheries 4: 25–64.CrossRefGoogle Scholar
Fabry, V. J., Seibel, B. A., Feely, R. A., and Orr, J. C. (2008). Impacts of ocean acidification on marine fauna and ecosystem processes. ICES Journal of Marine Science 65: 414–432.CrossRefGoogle Scholar
Fahey, S. J. and Garson, M. J. (2002). Geographic variation of natural products of tropical nudibranch Asteronotus cespitosus. Journal of Chemical Ecology 28: 1773–1785.CrossRefGoogle ScholarPubMed
Fahrbach, E., Hoppema, M., Rohardt, G., et al. (2011). Warming of deep and abyssal water masses along the Greenwich meridian on decadal timescales: The Weddell gyre as a heat buffer. Deep-Sea Research Part II 58: 2509–2523.CrossRefGoogle Scholar
Fields, P. A., Rudomin, E. L., and Somero, G. N. (2006). Temperature sensitivities of cytosolic malate dehydrogenases from native and invasive species of marine mussels (genus Mytilus): sequences–function linkages and correlations with biogeographic distribution. Journal of Experimental Marine Biology and Ecology 209: 656–667.Google Scholar
Fonda Umani, S., Milani, L., Borme, D., et al. (2005). Inter-annual variations of planktonic food webs in the northern Adriatic Sea. Science of the Total Environment 353: 218–231.CrossRefGoogle ScholarPubMed
Gazeau, F., Quiblier, C., Jansen, J. M., et al. (2007). Impact of elevated CO2 on shellfish calcification. Geophysical Research Letters 34: L07603. doi: 10.1029/2006GL028554.CrossRefGoogle Scholar
Genner, M. J., Sims, D. W., Wearmouth, V. J., et al. (2004). Regional climatic warming drives long-term community changes of British marine fish. Proceedings of Royal Society Part B – Biological Sciences 271: 655–661.Google ScholarPubMed
Gilman, E. L., Ellison, J., Duke, N. C., and Field, C. (2008). Threats to mangroves from climate change and adaptation options: A review. Aquatic Botany 89: 237–250.CrossRefGoogle Scholar
Gorman, D., Russell, B. D., and Connell, S. D. (2009). Land-to-sea connectivity: linking human-derived terrestrial subsidies to subtidal habitat change on open rocky coasts. Ecological Applications 19: 1114–1126.CrossRefGoogle ScholarPubMed
Graham, N. A. J., Wilson, S. K., Jennings, S., et al. (2006). Dynamic fragility of oceanic coral reef ecosystems. Proceedings of the National Academy of Sciences of the United States of America 103: 8425–8429.CrossRefGoogle ScholarPubMed
Gregg, W. W., Conkright, M. E., Ginoux, P., et al. (2003). Ocean primary production and climate: Global decadal changes. Geophysics Research Letters 30: 1809.CrossRefGoogle Scholar
Grehan, A. J., van den Hove, S., Armstrong, C. W., et al. (2009). HERMES: Promoting ecosystem-based management and the sustainable use and governance of deep water resources. Oceanography 22(1): 154–166.CrossRefGoogle Scholar
Hansen, J., Sato, M., Ruedy, R., et al. (2007). Dangerous human-made interference with climate: A GISS model E study. Atmospheric Chemistry and Physics 7: 2287–2312.CrossRefGoogle Scholar
Harley, C. D. G, Hughes, A. R., Hultgren, K. M., et al. (2006). The impacts of climate change in coastal marine systems. Ecology Letters 9: 228–241.CrossRefGoogle ScholarPubMed
Hawkins, S. J., Moore, P. J., Burrows, M. T., et al. (2008). Complex interactions in a rapidly changing world: Responses of rocky shore communities to recent climate change. Climate Research 37: 123–133.CrossRefGoogle Scholar
Hays, G. C., Richardson, A. J., and Robinson, C. (2005). Climate change and marine plankton. Trends in Ecology and Evolution 20(6): 337–344.CrossRefGoogle ScholarPubMed
Helmuth, B., Mieszkowska, N., Moore, P., and Hawkins, S. J. (2006). Living on the edge of two changing worlds: Forecasting the responses of rocky intertidal ecosystems to climate change. Annual Review Ecology, Evolution, and Systematics 37: 373–404.CrossRefGoogle Scholar
Hoegh-Guldberg, O. (1999). Climate change, coral bleaching and the future of the world's coral reefs. Marine and Freshwater Research 50: 839–866.CrossRefGoogle Scholar
Hoegh-Guldberg, O. (2004). Coral reefs in a century of rapid environmental change. Symbiosis 37: 1–31.Google Scholar
Hoegh-Guldberg, O. and Bruno, J. F. (2010). The impact of climate change on the world's marine ecosystems. Science 328: 1523–1528.CrossRefGoogle ScholarPubMed
Hogg, R. C. (2006). Novel approaches to pain relief using venom-derived peptides. Current Medicinal Chemistry 13: 3191–3201.CrossRefGoogle ScholarPubMed
Hughes, T. P., Baird, A. H., Bellwood, D. R., et al. (2003). Climate change, human impacts, and the resilience of coral reefs. Science 301(5635): 929–933.CrossRefGoogle ScholarPubMed
Hutchings, P. A. and Salvat, B. (2000). The Indian Ocean to the Pacific: French Polynesia. In: Seas at the Millennium: An Environmental Evaluation. Sheppard, C. (ed.). Amsterdam: Elsevier, pp. 813–826.Google Scholar
Hutchings, P. A., Ahyong, S., Byrne, M., et al. (2007). Vulnerability of benthic invertebrates of the Great Barrier Reef to climate change. In: Climate Change and the Great Barrier Reef: A Vulnerability Assessment. Johnson, J. E. and Marshall, P. A. (eds.). Townsville: Great Barrier Reef Marine Park Authority and Australian Greenhouse Office, pp. 309–356.Google Scholar
IPCC (2001) Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. (2001) Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K., and Johnson, C. A. (eds.). Cambridge and New York: Cambridge University Press, 881 pp.Google Scholar
IPCC (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L. (eds.). Cambridge: Cambridge University Press, 996 pp.Google Scholar
IUCN (2010). The Millennium Ecosystem Assessment. IUCN Policy Paper. Gland: IUCN, 3 pp.
Ivanov, V. V., Shapiro, G. I., Huthnance, J. M., et al. (2004). Cascades of dense water around the world ocean. Progress in Oceanography 60: 47–98.CrossRefGoogle Scholar
Jones, G. P., McCormick, M. I., Srinivasan, M., and Eagle, J. V. (2004). Coral decline threatens fish biodiversity in marine reserves. Proceedings of the National Academy of Sciences of the United States of America 101: 8251–8253.CrossRefGoogle ScholarPubMed
Kathiresan, K. and Bingham, B. L. (2001). Biology of mangroves and mangrove ecosystems. Advances in Marine Biology 40: 81–251.Google Scholar
Keeling, R. F. and Garcia, H. (2002). The change in oceanic O2 inventory associated with recent global warming. Proceedings of the National Academy of Sciences of the United States of America 99(12): 7848–7853.CrossRefGoogle Scholar
Keeling, R. F., Körtzinger, A., and Gruber, N. (2010). Ocean deoxygenation in a warming world. Annual Review of Marine Science 2: 199–229.CrossRefGoogle Scholar
Khatiwala, S., Primeau, F., and Hall, T. (2009). Reconstruction of the history of anthropogenic CO2 concentrations in the ocean. Nature 462: 346–349.CrossRefGoogle Scholar
Kirchman, D. L., Anxelu, X., Morán, G., and Ducklow, H. (2009). Microbial growth in the polar oceans – role of temperature and potential impact of climate change. Nature Reviews 7: 451–459.Google ScholarPubMed
Kristensen, E., Bouillon, S., Dittmar, T., and Marchand, C. (2008). Organic carbon dynamics in mangrove ecosystems: A review. Aquatic Botany 89: 201–219.CrossRefGoogle Scholar
Kuffner, I. B., Andersson, A. J., Jokiel, P. L., et al. (2008). Decreased abundance of crustose coralline algae due to ocean acidification. Nature Geoscience 1: 114–117.CrossRefGoogle Scholar
Laws, E. A. (2004). Export flux and stability as regulators of community composition in pelagic marine biological communities: Implications for regime shifts. Progress in Oceanography 60: 343–354.CrossRefGoogle Scholar
Levin, L. A. (2010). Anaerobic metazoans: No longer an oxymoron. BMC Biology 8: 31.CrossRefGoogle ScholarPubMed
Lotze, H. K., Lenihan, H. S., Bourque, B. J., et al. (2006). Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312(5781): 1806–1809.CrossRefGoogle ScholarPubMed
Lough, J. M. (2008). 10th anniversary review: A changing climate for coral reefs. Journal of Environmental Monitoring 10: 21–29.CrossRefGoogle ScholarPubMed
Lovelock, C. E. and Ellison, J. C. (2007). Vulnerability of mangroves and tidal wetlands of the Great Barrier Reef to climate change. In: Climate Change and the Great Barrier Reef: A Vulnerability Assessment. Johnson, J. E. and Marshall, P. A. (eds.). Townsville: Great Barrier Reef Marine Park Authority and Australian Greenhouse Office, pp. 237–269.Google Scholar
Loya, Y., Sakai, K., Yamazato, K., et al. (2001). Coral bleaching: The winners and the losers. Ecology Letters 4: 122–131.CrossRefGoogle Scholar
Lüthi, D., Le Floch, M., Bereiter, B., et al. (2008). High-resolution carbon dioxide concentration record 650,000−800,000 years before present. Nature 453: 379–382.CrossRefGoogle ScholarPubMed
Manson, R. A., Loneragan, N. R., Skilleter, G. A., and Phinn, S. R. (2005). An evaluation of the evidence for linkages between mangroves and fisheries: A synthesis of the literature and identification of research directions. Oceanography and Marine Biology: An Annual Review 43: 483–513.Google Scholar
Martin, D., Bertasi, F., Colangelo, M. A., et al. (2005). Ecological impact of coastal defence structures on sediment and mobile fauna: evaluating and forecasting consequences of unavoidable modifications of native habitats. Ecological Engineering 52: 1027–1051.Google Scholar
Masuda, S., Awaji, T., Sugiura, N., et al. (2010). Simulated rapid warming of abyssal North Pacific waters. Science 329: 319–322.CrossRefGoogle ScholarPubMed
McClain, C. R., Rex, M. A., and Jabbour, R. (2005). Deconstructing bathymetric body size patterns in deep-sea gastropods. Marine Ecology Progress Series 297: 181–187.CrossRefGoogle Scholar
McGinty, N., Power, A. M., and Johnson, M. P. (2011). Variation among northeast Atlantic regions in the responses of zooplankton to climate change: Not all areas follow the same path. Journal of Experimental Marine Biology and Ecology 400: 120–131.CrossRefGoogle Scholar
McGowan, J. A., Cayan, D. R., and LeRoy, M. D. (1998). Climate-ocean variability and ecosystem response in the northeast Pacific. Science 281: 210–217.CrossRefGoogle ScholarPubMed
Mieszkowska, N., Genner, M. J., Hawkins, S. J., and Sims, D. W. (2009). Effects of climate change and commercial fishing on Atlantic Cod Gadus morhua. Advances in Marine Biology 56: 213–273.Google ScholarPubMed
Mumby, P. J., Chisholm, J., Edwards, A., et al. (2001). Unprecedented bleaching-induced mortality in Porites spp. at Rangiroa Atoll, French Polynesia. Marine Biology 139(1): 183–189.Google Scholar
Munday, P. L., Jones, G. P., Sheaves, M., et al. (2007). Vulnerability of fishes of the Great Barrier Reef to climate change. In: Climate Change and the Great Barrier Reef: A Vulnerability Assessment. Johnson, J. E. and Marshall, P. A. (eds.). Townsville: Great Barrier Reef Marine Park Authority and Australian Greenhouse Office, pp. 357–391.Google Scholar
Myers, R. A. and Worm, B. (2003). Rapid worldwide depletion of predatory fish communities. Nature 423: 280–283.CrossRefGoogle ScholarPubMed
Nagelkerken, I., Blaber, S. J. M., Bouillon, S., et al. (2008). The habitat function of mangroves for terrestrial and marine fauna: A review. Aquatic Botany 89: 155–185.CrossRefGoogle Scholar
Occhipinti-Ambrogi, A. and Galil, B. (2010). Marine alien species as an aspect of global change. Advances in Oceanography and Limnology 1(1): 199–218.CrossRefGoogle Scholar
Orth, R. J., Carruthers, T. J. B., Dennison, W. C., et al. (2006). Global crisis for seagrass ecosystems. BioScience 56(12): 987–996.CrossRefGoogle Scholar
Page, M., West, L., Northcote, P., et al. (2005). Spatial and temporal variability of cytotoxic metabolites in populations of the New Zealand sponge Mycale hentscheli. Journal of Chemical Ecology 31: 1161–1174.CrossRefGoogle ScholarPubMed
Pandolfi, J. M., Jackson, J. B. C., Baron, N., et al. (2005). Are U.S. coral reefs on the slippery slope to slime?Science 307: 1725–1726.CrossRefGoogle ScholarPubMed
Passow, U. (2004). Switching perspectives: Do mineral fluxes determine particulate organic carbon fluxes or vice versa?Geochemistry Geophysics and Geosystem 5: Q04002.CrossRefGoogle Scholar
Patz, J. A., Campbell-Lendrum, D., Holloway, T., and Foley, J. A. (2005). Impact of regional climate change on human health. Nature 438: 310–317.CrossRefGoogle ScholarPubMed
Philippart, C. J. M., Anadón, R., Danovaro, R., et al. (2011). Impacts of climate change on European marine ecosystems: Observations, expectations and indicators. Journal of Experimental Marine Biology and Ecology 400: 52–69.CrossRefGoogle Scholar
Poloczanska, E. S., Babcock, R. C., Butler, A., et al. (2007). Climate change and Australian marine life. Oceanography and Marine Biology: An Annual Review 45: 407–478.Google Scholar
Pounds, J. A., Bustamante, M. R., Coloma, L. A., et al. (2006). Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439: 161–167.Google ScholarPubMed
Precali, R., Giani, M., Marini, M., et al. (2005). Mucilaginous aggregates in the northern Adriatic in the period 1999–2002: Typology and distribution. Science of the Total Environment 353: 10–23.CrossRefGoogle ScholarPubMed
Przeslawski, R., Ahyong, S., Byrne, M., et al. (2008). Beyond corals and fish: The effects of climate change on noncoral benthic invertebrates of tropical reefs. Global Change Biology 14: 2773–2795.CrossRefGoogle Scholar
Pusceddu, A., Mea, M., Gambi, C., et al. (2010). Ecosystem effects of dense water formation on deep Mediterranean Sea ecosystems: An overview. Advances in Oceanography and Limnology 1(1): 67–83.CrossRefGoogle Scholar
Ramirez-Llodra, E., Brandt, A., Danovaro, R., De Mol, B., et al. (2010). Deep, diverse and definitely different: Unique attributes of the world's largest ecosystem. Biogeosciences 7: 2851–2899.CrossRefGoogle Scholar
Ramirez-Llodra, E., Tyler, P. A., Baker, M. C., et al. (2011). Man and the last great wilderness: Human impact on the deep sea. PLoS ONE. 6(7): e22588.CrossRefGoogle ScholarPubMed
Richardson, A. J., Bakun, A., Hays, G. C., and Gibbons, M. J. (2009). The jellyfish joyride: Causes, consequences and management responses to a more gelatinous future. Trends in Ecology and Evolution 24: 312–322.CrossRefGoogle ScholarPubMed
Rinaldi, A., Vollenweider, R. A., Montanari, G., et al. (1995). Mucilages in Italian seas: The Adriatic and Tyrrhenian Seas, 1988–1991. Science of the Total Environment 165: 165–183.CrossRefGoogle Scholar
Roessig, J. M., Woodley, C. M., Cech, J. J., and Hansen, L. J. (2004). Effects of global climate change on marine and estuarine fishes and fisheries. Reviews in Fish Biology and Fisheries 14: 251–275.CrossRefGoogle Scholar
Royal Society (2005). Ocean Acidification Due to Increasing Atmospheric Carbon Dioxide. Policy Document 12/05, The Royal Society, London, 60 pp.
Ruhl, H. A. (2007). Abundance and size distribution dynamics of abyssal epibenthic megafauna in the northeast Pacific. Ecology 88: 1250–1262.CrossRefGoogle ScholarPubMed
Ruhl, H. A. and Smith, K. L. Jr. (2004). Shifts in deep-sea community structure linked to climate and food supply. Science 305: 513–515.CrossRefGoogle ScholarPubMed
Russell, B. D. (2007). Effects of canopy-mediated abrasion and water flow on the early colonisation of turf-forming algae. Marine Freshwater Research 58: 657–665.CrossRefGoogle Scholar
Russell, B. D., Thompson, J. I., Falkenberg, L. J., and Connell, S. D. (2009). Synergistic effects of climate change and local stressors: CO2 and nutrient driven change in subtidal rocky habitats. Global Change Biology 15: 2153–2162.CrossRefGoogle Scholar
Sala, O. E., Chapin, F. S. III, Armesto, J. J., et al. (2000). Global biodiversity scenarios for the year 2100. Science 287: 1770–1774.Google ScholarPubMed
Sarmiento, J. L., Hughes, T. M. C., Stouffer, R. J., and Manabe, S. (1998). Simulated response of the ocean carbon cycle to anthropogenic climate warming. Nature 393: 245–249.CrossRefGoogle Scholar
Saunders, M. and Metaxas, A. (2007). Temperature explains settlement patterns of the introduced bryozoan Membranipora membranacea in Nova Scotia, Canada. Marine Ecology Progress Series 344: 95–106.CrossRefGoogle Scholar
Schindler, D. W. (2006). Recent advances in the understanding and management of eutrophication. Limnology and Oceanography 51: 356–363.CrossRefGoogle Scholar
Sheppard, C., Dixon, D. J., Gourlay, M. J., et al. (2005). Coral mortality increases wave energy reaching shores protected by reef flats: Examples from the Seychelles. Estuarine, Coastal and Shelf Science 64: 223–234.CrossRefGoogle Scholar
Short, F. T. and Neckles, H. A. (1999). The effects of global climate change on seagrasses. Aquatic Botany 63: 169–196.CrossRefGoogle Scholar
Smith, C. R., De Leo, F. C., Bernardino, A. F., et al. (2008). Abyssal food limitation, ecosystem structure and climate change. Trends in Ecology and Evolution 23: 518–528.CrossRefGoogle ScholarPubMed
Smith, K. L., Jr., Ruhl, H. A., Bett, B. J., et al. (2009). Climate, carbon cycling, and deep-ocean ecosystems. Proceedings of the National Academy of Sciences of the United States of America 106(46): 19211–19218.CrossRefGoogle ScholarPubMed
Smith, L., Gilmour, J., and Heyward, A. (2007). Resilience of coral communities on an isolated system of reefs following catastrophic mass-bleaching. Coral Reefs 27: 197–205.Google Scholar
Snedaker, S. C. (1995). Mangroves and climate change in the Florida and Caribbean region: Scenarios and hypotheses. Hydrobiologia 295: 43–49.CrossRefGoogle Scholar
Spalding, M., Taylor, M., Ravilious, C., et al. (2003). Global overview: The distribution and status of seagrasses. In: World Atlas of Seagrasses. Green, E. P. and Short, F. T. (eds.). Cambridge and Berkeley: UNEP World Conservation Monitoring Centre and University of California Press, pp. 5–26.Google Scholar
Stachowicz, J. J., Terwin, J. R., Whitlatch, R. B., and Osman, R. W. (2002). Linking climate change and biological invasions: Ocean warming facilitates nonindigenous species invasions. Proceedings of the National Academy of Sciences of the United States of America 99: 15497–15500.CrossRefGoogle ScholarPubMed
Steneck, R. S., Graham, M. H., Bourque, B. J., et al. (2002). Kelp forest ecosystems: Biodiversity, stability, resilience and future. Environmental Conservation 29: 436–459.CrossRefGoogle Scholar
Stramma, L., Johnson, G. C., Sprintall, J., and Mohrholz, V. (2008). Expanding oxygen-minimum zones in the tropical oceans. Science 320: 655–658.CrossRefGoogle ScholarPubMed
Suttle, C. A. (2005). Viruses in the sea. Nature 437: 356–361.CrossRefGoogle Scholar
Suttle, C. A. (2007). Marine viruses – major players in the global ecosystem. Nature Review Microbiology 5: 801–812.CrossRefGoogle ScholarPubMed
Thomas, C. D., Cameron, A., Green, R. E., et al. (2004). Extinction risk from climate change. Nature 427: 145–148.CrossRefGoogle ScholarPubMed
Tittensor, D. P., Mora, C., Jetz, W., et al. (2010). Global patterns and predictors of marine biodiversity across taxa. Nature 466: 1098–1101.CrossRefGoogle ScholarPubMed
Trenberth, K. E. and Josey, S. A. (2007). Observations: Surface and atmospheric climate change. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H.L. (eds.). Cambridge: Cambridge University Press, pp. 235–236.Google Scholar
Twilley, R. R. (1995). Properties of mangrove ecosystems related to the energy signature of coastal environments. In: Maximum Power: The Ideas and Applications of H.T. Odum. Hall, C. A. S. (ed.). Boulder: University of Colorado Press, pp. 43–62.Google Scholar
UNEP–WCMC (2006). In the Front Line: Shoreline Protection and Other Ecosystem Services from Mangroves and Coral Reefs. Cambridge: UNEP–WCMC, 33 pp.
Vaquer-Sunyer, R. and Duarte, C. M. (2008). Thresholds of hypoxia for marine biodiversity. Proceedings of the National Academy of Sciences of the United States of America USA 105: 15452–15457.CrossRefGoogle ScholarPubMed
Walther, G.-R., Burga, C. A., and Edwards, P. J. (eds.) 2001. Fingerprints of Climate Change: Adapted Behavior and Shifting Species Ranges. New York: Kluwer Academic/Plenum, 333 pp.CrossRefGoogle Scholar
Walther, G.-R., Post, E., Convey, P., et al. (2002). Ecological responses to recent climate change. Nature 419: 389–395.Google Scholar
Walther, G.-R., Roques, A., Hulme, P. E., et al. (2009). Alien species in a warmer world: Risks and opportunities. Trends in Ecology and Evolution 24(12): 686–693.CrossRefGoogle Scholar
Wernberg, T., Thomsen, M. S., Tuya, F., et al. (2010). Decreasing resilience of kelp beds along a latitudinal temperature gradient: Potential implications for a warmer future. Ecology Letters 13: 685–694.CrossRefGoogle ScholarPubMed
Whitney, F. A., Freeland, H. J., and Robert, M. (2007). Persistently declining oxygen levels in the interior waters of the eastern sub-Arctic Pacific. Progress in Oceanography 75: 179–199.CrossRefGoogle Scholar
Wilkie, M. L. and Fortuna, S. (2003). Status and Trends in Mangrove Area Extent Worldwide. Forest Resources Assessment Working Paper No. 63. Rome: FAO.Google Scholar
Wilkinson, C. R. (ed.) (2000). Status of Coral Reefs of the World. Townsville: Australian Institute of Marine Science.Google Scholar
Willis, B. L., van Oppen, M. J. H., Miller, D. J., et al. (2006). The role of hybridization in the evolution of reef corals. Annual Review of Ecology Evolution and Systematics 37: 489–517.CrossRefGoogle Scholar
Wilson, S. K., Graham, N. A. J., Pratchett, M. S., et al. (2006). Multiple disturbances and the global degradation of coral reefs: Are reef fishes at risk or resilient?Global Change Biology 12: 2220–2234.CrossRefGoogle Scholar
Wood, H. L., Spicer, J. I., and Widdicombe, S. (2008). Ocean acidification may increase calcification rates, but at a cost. Proceedings of the Royal Society Part B: Biological Sciences 275(1644): 1767–1773.Google Scholar
Worm, B. and Lotze, H. K. (2009). Changes in marine biodiversity as an indicator of climate and global change. In: Climate and Global Change: Observed Impacts on Planet Earth. Letcher, T. (ed.). Amsterdam: Elsevier, pp. 263–279.Google Scholar
Worm, B., Barbier, E. B., Beaumont, N., et al. (2006). Impacts of biodiversity loss on ocean ecosystem services. Science 314: 787–790.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×