Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-06T07:11:38.656Z Has data issue: false hasContentIssue false

6 - Numerical methods

Published online by Cambridge University Press:  05 March 2013

Thomas W. Baumgarte
Affiliation:
Bowdoin College, Maine
Stuart L. Shapiro
Affiliation:
University of Illinois, Urbana-Champaign
Get access

Summary

As we have seen, Einstein's field equations in 3 + 1 form consist of a set of nonlinear, multidimensional, coupled partial differential equations in space and time. The equations of motion of the matter fields that may be present are typically of a similar nature. Except for very idealized problems with special symmetries, such equations must be solved by numerical means, often on supercomputers. Just as there is no unique analytic formulation of the 3 + 1 field equations, there is no unique prescription by which a partial differential equation may be cast into a form suitable for numerical integration. Standard numerical algorithms for treating such equations may be found in many textbooks on numerical methods, as well as in textbooks, monographs and review articles on compuational physics. This branch of applied mathematics is a rich area of ongoing investigation; it progresses with each advance in computer technology. It would take us too far a field to review the subject in any depth here. Instead, we shall present a brief introduction to some of the basic numerical concepts and associated techniques, focusing on those most often employed to solve the partial differential equations that arise in numerical relativity. Although our treatment is rudimentary, we hope that it is sufficient to convey the flavor of the subject, especially to readers unfamiliar with the basic ideas. Throughout our discussion we shall refer the reader to some of the literature where further details and other references can be found.

Type
Chapter
Information
Numerical Relativity
Solving Einstein's Equations on the Computer
, pp. 183 - 228
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×