6 - Approximation
Published online by Cambridge University Press: 30 August 2023
Summary
Chapter 6 starts out with a physics motivation, as well as a mathematical statement of the problems that will be tackled in later sections. First, polynomial interpolation is carried out using both the monomial basis and the Lagrange-interpolation formalism, sped up via the barycentric formula. This includes a derivation of the error and an emphasis on using unequally spaced points (Chebyshev nodes). Second, cubic-spline interpolation is introduced. Third, a section is dedicated to trigonometric interpolation, carefully working through the conventions and formalism needed to implement one of the most successful algorithms ever, the fast Fourier transform (FFT). Fourth, the topic of linear least-squares fitting is tackled, including the general formalism of the normal equations. The second edition includes a substantive new section on statistical inference, covering both frequentist and Bayesian approaches to linear regression. Nonlinear least-squares fitting is covered next, including the Gauss-Newton method and artificial neural networks. The chapter is rounded out by a physics project, on the experimental verification of the Stefan-Boltzmann law, and a problem set. In addition to providing a historical background on black-body radiation, the physics project shows an example of nonlinear least-squares fitting.
Keywords
- Type
- Chapter
- Information
- Numerical Methods in Physics with Python , pp. 317 - 452Publisher: Cambridge University PressPrint publication year: 2023