Book contents
- Frontmatter
- Contents
- Participants
- Preface
- Acknowledgements
- Observational astronomy: the search for black holes
- Nucleosynthesis basics and applications to supernovae
- Signatures of nucleosynthesis in explosive stellar processes
- Neutrino transport and large-scale convection in core-collapse supernovae
- Neutron stars
- Massive neutrinos
- Cosmic ray physics and astrophysics
- Physical cosmology for nuclear astrophysicists
Physical cosmology for nuclear astrophysicists
Published online by Cambridge University Press: 07 September 2010
- Frontmatter
- Contents
- Participants
- Preface
- Acknowledgements
- Observational astronomy: the search for black holes
- Nucleosynthesis basics and applications to supernovae
- Signatures of nucleosynthesis in explosive stellar processes
- Neutrino transport and large-scale convection in core-collapse supernovae
- Neutron stars
- Massive neutrinos
- Cosmic ray physics and astrophysics
- Physical cosmology for nuclear astrophysicists
Summary
This lecture series provides an overview of modern physical cosmology with an emphasis on nuclear arguments and their role in the larger framework. In particular, the current situation on the age of the universe and the Hubble constant are reviewed and shown now to be in reasonable agreement once realistic systematic uncertainties are included in the estimates. Big bang nucleosynthesis is mentioned as one of the pillars of the big bang along with the microwave background radiation. It is shown that the big bang nucleosynthesis constraints on the cosmological baryon density, when compared with dynamical and gravitational lensing arguments, demonstrate that the bulk of the baryons are dark and also that the bulk of the matter in the universe is non–baryonic. The recent extragalactic deuterium observations as well as the other light element abundances are examined in detail. Comparison of nucleosynthesis baryonic density arguments with other baryon density arguments is made.
Introduction
Modern physical cosmology has entered a “golden period” where a multitude of observations and experiments are guiding and constraining the theory in a heretofore unimagined manner. Many of these constraints involve nuclear physics arguments, so the interface with nuclear astrophysics is extemely active. This review opens with a discussion of the three pillar of the big bang: the Hubble expansion, the cosmic microwave background, and big bang nucleosynthesis (BBN).
- Type
- Chapter
- Information
- Nuclear and Particle Astrophysics , pp. 277 - 297Publisher: Cambridge University PressPrint publication year: 1998