Skip to main content Accessibility help
×
  • Cited by 95
Publisher:
Cambridge University Press
Online publication date:
May 2012
Print publication year:
2012
Online ISBN:
9781139026079

Book description

In the past several decades the classical Perron–Frobenius theory for nonnegative matrices has been extended to obtain remarkably precise and beautiful results for classes of nonlinear maps. This nonlinear Perron–Frobenius theory has found significant uses in computer science, mathematical biology, game theory and the study of dynamical systems. This is the first comprehensive and unified introduction to nonlinear Perron–Frobenius theory suitable for graduate students and researchers entering the field for the first time. It acquaints the reader with recent developments and provides a guide to challenging open problems. To enhance accessibility, the focus is on finite dimensional nonlinear Perron–Frobenius theory, but pointers are provided to infinite dimensional results. Prerequisites are little more than basic real analysis and topology.

Reviews

'In their introduction the authors state that 'the main purpose of this book is to give a systematic self-contained introduction to nonlinear Perron–Frobenius theory and to provide a guide to various challenging open problems'. They have achieved their aim excellently.'

Hans Schneider - University of Wisconsin, Madison

‘Undoubtedly, this remarkable book will be of interest to all specialists in nonlinear analysis and its applications. Certainly, any mathematical library ought to carry this book.’

Peter Zabreiko Source: Zentralblatt MATH

'This textbook is a carefully arranged journey through large parts of this beautiful theory, which has seen various contributions by the authors in the past. The material is accessible with little more than a basic knowledge of linear algebra, real analysis and some topology. The book is self-contained, all results are proven very rigorously, and where appropriate, the evolution of results is explained and framed in the historical context. I recommend this book very warmly and without any reservations to anyone interested in nonlinear Perron–Frobenius theory.'

Bjorn S. Ruffer Source: Mathematical Reviews

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
References
[1] M., Abate, Iteration Theory of Holomorphic Maps on Taut Manifolds. Research and Lecture Notes in Mathematics, Rende, Mediterranean Press, 1989 Google Scholar.
[2] M.A., Akcoglu and U., Krengel, Nonlinear models of diffusion on a finite space. Probab. Theory Related Fields 76(4), (1987 Google Scholar), 411–20.
[3] M., Akian and S., Gaubert, Spectral theorem for convex monotone homogeneous maps, and ergodic control. Nonlinear Anal. 52(2), (2003 Google Scholar), 637–79.
[4] M., Akian, S., Gaubert, and B., Lemmens, Stability and convergence in discrete convex monotone dynamical systems. J. Fixed Point Theory Appl. 9(2), (2011 Google Scholar), 295–325.
[5] M., Akian, S., Gaubert, B., Lemmens, and R.D., Nussbaum, Iteration of order preserving subhomogeneous maps on a cone. Math. Proc. Cambridge Philos. Soc. 140(1), (2006 Google Scholar), 157–76.
[6] M., Akian, S., Gaubert, and R., Nussbaum, A Collatz–Wielandt characterization of the spectral radius of order-preserving homogeneous maps on cones, preprint. arXiv:1112.5968, 2012 Google Scholar.
[7] M., Akian, S., Gaubert, and R., Nussbaum, Uniqueness of the fixed point of nonexpansive semidifferentiable maps, preprint. arXiv:1201.1536, 2012 Google Scholar.
[8] P., Alexandroff and H., Hopf, Topologie.Berlin, Springer Verlag, 1935 Google Scholar.
[9] J.C. Álvarez, Paiva, Hilbert's fourth problem in two dimensions. In MASS Selecta: Teaching and Learning Advanced Undergraduate Mathematics. S., Katok, A., Sossinsky, and S., Tabachnikov, eds., Providence, RI, American Mathematical Society, 2003 Google Scholar, pp. 165–83.
[10] N., Aronszajn and P., Panitchpakdi, Extension of uniformly continuous transformations and hyperconvex metric spaces. Pacific J. Math. 6, (1956 Google Scholar), 405Ɖ439.
[11] F., Baccelli, G., Cohen, G.J., Olsder, and J.P., Quadrat, Synchronization and Linearity: An Algebra for Discrete Event Systems. Wiley Series in Probability and Statistics, Chichester, Wiley, 1992 Google Scholar.
[12] W., Ballmann, Lectures on Spaces of Nonpositive Curvature. DMV Seminar, 25, Basel, Birkhäuser Verlag, 1995 Google Scholar.
[13] S., Banach, Sur les opérations dans les ensembles abstraits et leurs applications aux équations intégrales. Fund. Math. 3, (1922 Google Scholar), 133–80.
[14] R., Bapat, D1 AD2 theorems for multidimensional matrices. Linear Algebra Appl. 48, (1982 Google Scholar), 437–42.
[15] R.B., Bapat and T.E.S., Raghavan, Nonnegative Matrices and Applications. Encyclopedia of Mathematics and its Applications, 64, Cambridge, Cambridge University Press, 1997 Google Scholar.
[16] G.P., Barker and R.E.L., Turner, Some observations on the spectra of conepreserving maps. Linear Algebra Appl. 6, (1973 Google Scholar), 149–53.
[17] F.L., Bauer, An elementary proof of the Hopf inequality for positive operators. Numer. Math. 7, (1965 Google Scholar), 331–7.
[18] A.F., Beardon, Iteration of contractions and analytic maps. J. Lond. Math. Soc. (2) 41(1), (1990 Google Scholar), 141–50.
[19] A.F., Beardon, The dynamics of contractions. Ergodic Theory Dynam. Systems 17(6), (1997 Google Scholar), 1257–66.
[20] A.F., Beardon, The Klein, Hilbert and Poincaré metrics of a domain. J. Comput. Appl. Math. 105(1–2), (1999 Google Scholar), 155–62.
[21] R., Bellman, Dynamic Programming. Princeton, NJ, Princeton University Press, 1957 Google Scholar.
[22] A., Berman and R.J., Plemmons, Nonnegative Matrices in the Mathematical Sciences. Computer Science and Applied Mathematics, New York, Academic Press, 1979 Google Scholar.
[23] T., Bewley and E., Kohlberg, The asymptotic theory of stochastic games. Math. Oper. Res. 1(3), (1976 Google Scholar), 197–208.
[24] R., Bhatia, Matrix Analysis. Graduate Texts in Mathematics, 169, New York, Springer Verlag, 1996 Google Scholar.
[25] G., Birkhoff, Extensions of Jentzsch's theorem. Trans. Amer. Math. Soc. 85(1), (1957 Google Scholar), 219–27.
[26] G., Birkhoff, Uniformly semi-primitive multiplicative processes. Trans. Amer. Math. Soc. 104, (1962 Google Scholar), 37–51.
[27] A., Blokhuis and H.A., Wilbrink, Alternative proof of Sine's theorem on the size of a regular polygon in ℝk with the ℓ∞-metric. Discrete Comput. Geom. 7(4), (1992 Google Scholar), 433–4.
[28] B., Bollobás, Combinatorics. Cambridge, Cambridge University Press, 1989 Google Scholar.
[29] F.F., Bonsall, Sublinear functionals and ideals in partially ordered vector spaces. Proc. Lond. Math. Soc. 4, (1954 Google Scholar). 402–18.
[30] F.F., Bonsall, Endomorphisms of partially ordered vector spaces. J. Lond. Math. Soc. 30, (1955 Google Scholar), 133–44.
[31] F.F., Bonsall, Endomorphisms of partially ordered vector spaces without order unit. J. Lond. Math. Soc. 30, (1955 Google Scholar), 145–53.
[32] F.F., Bonsall, Linear operators in complete positive cones. Proc. Lond. Math. Soc. 8(3), (1958 Google Scholar), 53–75.
[33] J.M., Borwein and P.B., Borwein, The arithmetic-geometric mean and fast computation of elementary functions. SIAM Rev. 26(3), (1984 Google Scholar), 351–66.
[34] J.M., Borwein and A.S., Lewis, Decomposition of multivariate functions. Canad. J. Math. 44(3), (1992 Google Scholar), 463–82.
[35] J.M., Borwein, A.S., Lewis, and R.D., Nussbaum, Entropy minimization, DAD problems, and doubly stochastic kernels. J. Funct. Anal. 123(2), (1994 Google Scholar), 264–307.
[36] T., Bousch and J., Mairesse, Finite-range topical functions and uniformly topical functions. Dyn. Syst. 21(1), (2006 Google Scholar), 73–114.
[37] M.R., Bridson and A., Haefliger, Metric Spaces of Non-positive Curvature. Grundlehren der Mathematischen Wissenschaften, 319, Berlin, Springer Verlag, 1999 Google Scholar.
[38] R.A., Brualdi, The DAD theorem for arbitrary row sums. Proc. Amer. Math. Soc. 45(2), (1974 Google Scholar), 189–94.
[39] R.A., Brualdi, S.V., Parter, and H., Schneider, The diagonal equivalence of a nonnegative matrix to a stochastic matrix. J. Math. Anal. Appl. 16, (1966 Google Scholar), 31–50.
[40] R.E., Bruck, Jr., Properties of fixed-point sets of nonexpansive mappings in Banach spaces. Trans. Amer. Math. Soc. 179, (1973 Google Scholar), 251–62.
[41] A.D., Burbanks, R.D., Nussbaum, and C., Sparrow, Extension of order-preserving maps on a cone. Proc. Roy. Soc. Edinburgh Sect. A 133A, (2003 Google Scholar), 35–59.
[42] H., Busemann, The Geometry of Geodesics. Pure and Applied Mathematics, 6, New York, Academic Press, 1955 Google Scholar.
[43] P.J., Bushell, Hilbert's projective metric and positive contraction mappings in a Banach space. Arch. Ration. Mech. Anal. 52, (1973 Google Scholar), 330–8.
[44] P.J., Bushell, On the projective contraction ratio for positive linear mappings. J. Lond. Math. Soc. 6, (1973 Google Scholar), 256–8.
[45] P.J., Bushell, On solutions of the matrix equation T′ AT = A2. Linear Algebra Appl. 8, (1974 Google Scholar), 465–9.
[46] P.J., Bushell, The Cayley-Hilbert metric and positive operators. Linear Algebra Appl. 84, (1986 Google Scholar), 271–80.
[47] P., Butkovic, Max-linear Systems: Theory and Algorithms. Springer Monographs in Mathematics, Berlin, Springer Verlag, 2010 Google Scholar.
[48] A., Całka, On a condition under which isometries have bounded orbits. Colloq. Math. 48, (1984 Google Scholar), 219–27.
[49] B.C., Carlson, Algorithms involving arithmetic and geometric means. Amer. Math. Monthly 78, (1971 Google Scholar), 496–505.
[50] I., Csiszár, I-divergence geometry of probability distributions and minimization problems. Ann. Probability 3, (1975 Google Scholar), 146–58.
[51] J., Cochet-Terrasson, S., Gaubert, and J., Gunawardena, A constructive fixed-point theorem for min-max functions. Dynam. Stability Systems 14(4), (1999 Google Scholar), 407–33.
[52] L., Collatz, Einschliessungs satz für die charakteristischen Zahlen von Matrizen. Math. Z. 48, (1942 Google Scholar), 221–6.
[53] D.A., Cox, The arithmetic-geometric mean of Gauss. Enseign. Math. (2) 30(3–4), (1984 Google Scholar), 275–330.
[54] M.G., Crandall and L., Tartar, Some relations between nonexpansive and order preserving mappings. Proc. Amer. Math. Soc. 78(3), (1980 Google Scholar), 385–90.
[55] C.M., Dafermos and M., Slemrod, Asymptotic behavior of nonlinear contraction semigroups. J. Funct. Anal. 13, (1973 Google Scholar), 97–106.
[56] A., Denjoy, Sur l'itération des fonctions analytiques. C. R. Acad. Sc. Paris, Seriel 182, (1926 Google Scholar), 255–7.
[57] W.F., Donoghue, Jr., Monotone Matrix Functions and Analytic Continuation. Grundlehren der Mathematischen Wissenschaften, 207, New York, Springer Verlag, 1974 Google Scholar.
[58] N., Dunford and J.T., Schwartz. Linear Operators. Wiley Classics Library, New York, John Wiley & Sons, 1988 Google Scholar.
[59] B.C., Eaves, A.J., Hoffman, U.G., Rothblum, and H., Schneider, Line-sumsymmetric scalings of square nonnegative matrices. Math. Programming Stud. 25, (1985 Google Scholar), 124–41.
[60] M., Edelstein, On non-expansive mappings of Banach spaces. Proc. Cambridge Philos. Soc. 60, (1964 Google Scholar), 439–47.
[61] S.P., Eveson and R.D., Nussbaum, An elementary proof of the Birkhoff–Hopf theorem. Math. Proc. Cambridge Philos. Soc. 117, (1995 Google Scholar), 31–55.
[62] S.P., Eveson and R.D., Nussbaum, Applications of the Birkhoff–Hopf theorem to the spectral theory of positive linear operators. Math. Proc. Cambridge Philos. Soc. 117, (1995 Google Scholar), 491–512.
[63] J., Faraut and A., Korányi, Analysis on Symmetric Cones. Oxford, Clarendon Press, 1994 Google Scholar.
[64] M., Fekete, Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten. Math. Z. 17(1), (1923 Google Scholar), 228–49.
[65] S.E., Fienberg, An iterative procedure for estimation in contingency tables. Ann. Math. Statist. 41, (1970 Google Scholar), 907–17.
[66] T., Foertsch and A., Karlsson, Hilbert metrics and Minkowski norms. J. Geom. 83(1–2), (2005 Google Scholar), 22–31.
[67] J., Franklin and J., Lorenz, On the scaling of multidimensional matrices. Linear Algebra Appl. 114/115, (1989 Google Scholar), 717–35.
[68] H., Freudenthal and W., Hurewicz, Dehnungen, Verkürzungen, Isometrien. Fund. Math. 26 (1936 Google Scholar), 120–2.
[69] S., Friedland and H., Schneider, The growth of powers of a nonnegative matrix. SIAM J. Algebraic Discrete Methods 1, (1980 Google Scholar), 185–200.
[70] G., Frobenius, Über Matrizen aus positiven Elementen. S.-B. Preuss. Akad. Wiss (Berlin), (1908 Google Scholar), 471–6.
[71] G., Frobenius, Über Matrizen aus positiven Elementen, II. S.-B. Preuss. Akad. Wiss (Berlin), (1908 Google Scholar), 514–18.
[72] G., Frobenius, Über Matrizen aus nicht negativen Elementen. S.-B. Preuss. Akad. Wiss (Berlin), (1912 Google Scholar), 456–77.
[73] F.R., Gantmacher, The Theory of Matrices, Vols. 1, 2. New York, Chelsea, 1959 Google Scholar.
[74] S., Gaubert and J., Gunawardena, The Perron–Frobenius theory for homogeneous, monotone functions. Trans. Amer. Math. Soc. 356(12), (2004 Google Scholar), 4931–50.
[75] S., Gaubert and G., Vigeral, A maximin characterization of the escape rate of nonexpansive mappings in metrically convex spaces, Math. Proc. Cambridge Phil. Soc., in press. arXiv: 1012.4765, 2010. DOI: 10.1017/S0305004111000673, 2011 Google Scholar.
[76] K., Goebel and W.A., Kirk, Some problems in metric fixed point theory. J. Fixed Point Theory Appl. 4(1), (2008 Google Scholar), 13–25.
[77] K., Goebel and S., Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Monographs and Textbooks in Pure and Applied Mathematics, 83, New York, Marcel Dekker, 1984 Google Scholar.
[78] M., Gromov, Hyperbolic manifolds, groups and actions. In Riemann Surfaces and Related Topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, NY, 1978), Annals of Mathematics Studies, 97, Princeton, NJ, Princeton University Press, 1981 Google Scholar, pp. 183–213.
[79] J., Gunawardena, An introduction to idempotency. In Idempotency (Bristol, 1994), J., Gunawardena, ed., Publications of the Newton Institute, 11, Cambridge, Cambridge University Press, 1998 Google Scholar, pp. 1–49.
[80] J., Gunawardena, From max-plus algebra to nonexpansive mappings: A nonlinear theory for discrete event systems. Theoret. Comput. Sci. 293(1), (2003 Google Scholar), 141–67.
[81] J., Gunawardena and C., Walsh, Iterates of maps which are non-expansive in Hilbert's projective metric. Kybernetika (Prague) 39(2), (2003 Google Scholar), 193–204.
[82] G.H., Hardy, J.E., Littlewood, and G., Pólya, Inequalities. Cambridge Mathematical Library, Cambridge, Cambridge University Press, 1988 Google Scholar.
[83] P., de la Harpe, On Hilbert's metric for simplices. In Geometric Group Theory, Vol. 1, Niblo, G.A., et al., eds., Lecture Note Series, 181, London Mathematical Society, 1993 Google Scholar, pp. 97–119.
[84] T., Hawkins, Continued fractions and the origins of the Perron–Frobenius theorem. Arch. Hist. Exact Sci. 62(6), (2008 Google Scholar), 655–717.
[85] M., Hervé, Quelques proprietés des applications analytiques d'une boule à m dimensions dans elle-même. J. Math. Pures Appl. 42, (1963 Google Scholar), 117–47.
[86] D., Hilbert, Über die gerade Linie als kürzeste Verbindung zweier Punkte. Math. Ann. 46, (1895 Google Scholar), 91–6
[87] M.W., Hirsch, Stability and convergence in strongly monotone dynamical systems. J. Reine Angew. Math. 383, (1988 Google Scholar), 1–53.
[88] M.W., Hirsch, Positive equilibria and convergence in subhomogeneous monotone dynamics. In Comparison Methods and Stability Theory, X., Liu and D., Siegel, eds., Lecture Notes in Pure and Applied Mathematics, 162, New York, Marcel Dekker, 1994 Google Scholar, pp. 169–88.
[89] M.W., Hirsch and H., Smith, Monotone dynamical systems. In Handbook of Differential Equations: Ordinary Differential Equations, Vol. II, Amsterdam, Elsevier, 2005 Google Scholar, pp. 239–357.
[90] E., Hopf, An inequality for positive integral operators. J. Math. Mech 12, (1963 Google Scholar), 683–92.
[91] E., Hopf, Remarks on my paper “An inequality for positive integral operators.”J. Math. Mech. 12, (1963 Google Scholar), 889–92.
[92] R.A., Howard, Dynamic Programming and Markov Processes. New York, John Wiley & Sons, 1960 Google Scholar.
[93] G., Jameson, Ordered Linear Spaces. Lecture Notes in Mathematics, 141, Berlin, Springer Verlag, 1970 Google Scholar.
[94] P., Jordan, J., von Neumann, and E., Wigner, On an algebraic generalization of the quantum mechanical formalism. Ann. of Math. (2) 35(1), (1934 Google Scholar), 29–64.
[95] B., Kalantari and L., Khachiyan, On the complexity of nonnegative-matrix scaling. Linear Algebra Appl. 240, (1996 Google Scholar), 87–103.
[96] J., Kapeluszny, T., Kuczumow, and S., Reich, The Denjoy–Wolff theorem in the open unit ball of a strictly convex Banach space. Adv. Math. 143(1), (1999 Google Scholar), 111–23.
[97] J., Kapeluszny, T., Kuczumow, and S., Reich, The Denjoy–Wolff theorem for condensing holomorphic mappings. J. Funct. Anal. 167(1), (1999 Google Scholar), 79–93.
[98] S., Karlin and L., Nirenberg, On a theorem of P. Nowosad. J. Math. Anal. Appl. 17, (1967 Google Scholar), 61–7.
[99] A., Karlsson, Nonexpanding maps and Busemann functions. Ergodic Theory Dynam. Systems 21(5), (2001 Google Scholar), 1447–57.
[100] A., Karlsson, V., Metz, and G.A., Noskov, Horoballs in simplices and Minkowski spaces. Int. J. Math. Math. Sci. 2006, Article ID 23656, (2006 Google Scholar), 20 pages.
[101] A., Karlsson and G.A., Noskov, The Hilbert metric and Gromov hyperbolicity. Enseign. Math. (2) 48(1–2), (2002 Google Scholar), 73–89.
[102] T., Kato, Perturbation Theory for Linear Operators. Grundlehren der Mathematischen Wissenschaften, 132, Berlin, Springer Verlag, 1976 Google Scholar.
[103] P.E., Kloeden and A.M., Rubinov, A generalization of the Perron–Frobenius theorem. Nonlinear Anal. 41(1–2), (2000 Google Scholar), 97–115.
[104] E., Kohlberg, Invariant half-lines of nonexpansive piecewise-linear transformations. Math. Oper. Res. 5(3), (1980 Google Scholar), 366–72.
[105] E., Kohlberg, The Perron–Frobenius theorem without additivity. J. Math. Econom. 10, (1982 Google Scholar), 299–303.
[106] E., Kohlberg and A., Neyman, Asymptotic behavior of nonexpansive mappings in normed linear spaces. Israel J. Math. 38(4), (1981 Google Scholar), 269–75.
[107] E., Kohlberg and J.W., Pratt, The contraction mapping approach to the Perron–Frobenius theory: Why Hilbert's metric?Math. Oper. Res. 7(2), (1982 Google Scholar), 198–210.
[108] K., Koufany, Application of Hilbert's projective metric on symmetric cones. Acta Math. Sin. (Engl. Ser.) 22(5), (2006 Google Scholar), 1467–72.
[109] M.A., Krasnosel'skii, Positive Solutions of Operator Equations. Groningen, Noordhoff, 1964 Google Scholar.
[110] M.A., Krasnosel'skii, J. A., Lifshits, and A.V., Sobolev, Positive Linear Systems: The Method of Positive Operators. Sigma Series in Applied Mathematics, 5, Lemgo, Heldermann Verlag, 1989 Google Scholar.
[111] M.A., Krasnosl'skii and A.V., Sobolev, Spectral clearance of a focussing operator. Funct. Anal. Appl. 17, (1983 Google Scholar), 58–9.
[112] U., Krause, A nonlinear extension of the Birkhoff-Jentzsch theorem. J. Math. Anal. Appl. 114(2), (1986 Google Scholar), 552–68.
[113] U., Krause, Relative stability for ascending and positively homogeneous operators on Banach spaces. J. Math. Anal. Appl. 188(1), (1994 Google Scholar), 182–202.
[114] U., Krause and R.D., Nussbaum, A limit set trichotomy for self-mappings of normal cones in Banach spaces. Nonlinear Anal. 20(7), (1993 Google Scholar), 855–70.
[115] U., Krause and P., Ranft, A limit set trichotomy for monotone nonlinear dynamical systems. Nonlinear Anal. 19(4), (1992 Google Scholar), 375–92.
[116] M.G., Kreĭn and D., Milman, On the extreme points of regularly convex sets. Studia Math. 9, (1940 Google Scholar), 133–8.
[117] M.G., Kreĭn and M.A., Rutman, Linear operators leaving invariant a cone in a Banach space. Amer. Math. Soc. Translation 1950 26, (1950 Google Scholar), 199–325.
[118] E., Landau, Handbuch der Lehre von der Verteilung der Primzahlen, I, 2nd ed. New York, Chelsea, 1953 Google Scholar.
[119] B., Lemmens, Nonexpansive mappings on Hilbert's metric spaces. Topol. Methods Nonlinear Anal. 38(1), (2011 Google Scholar), 45–58.
[120] B., Lemmens and R., Nussbaum, Continuity of the cone spectral radius. Proc. Amer. Math. Soc.,in press. arXiv: 1107.4532, 2011 Google Scholar.
[121] B., Lemmens, R.D., Nussbaum, and S.M. Verduyn, Lunel, Lower and upper bounds for ω-limit sets of nonexpansive maps. Indag. Math. (N.S.) 12(2), (2001 Google Scholar), 191–211.
[122] B., Lemmens and M., Scheutzow, A characterization of the periods of periodic points of 1-norm nonexpansive maps. Selecta Math. (N.S.) 9(4), (2003 Google Scholar), 557–78.
[123] B., Lemmens and M., Scheutzow, On the dynamics of sup-norm nonexpansive maps. Ergodic Theory Dynam. Systems 25(3), (2005 Google Scholar), 861–71.
[124] B., Lemmens and C., Sparrow, A note on periodic points of order preserving subhomogeneous maps. Proc. Amer. Math. Soc. 134(5), (2006 Google Scholar), 1513–17.
[125] B., Lemmens, C., Sparrow, and M., Scheutzow, Transitive actions of finite abelian groups of sup-norm isometries. European J. Combin. 28(4), (2007 Google Scholar), 1163–79.
[126] B., Lemmens and O.W., van Gaans, Periods of order-preserving nonexpansive maps on strictly convex normed spaces. J. Nonlinear Convex Anal. 4(3), (2003 Google Scholar), 353–63.
[127] B., Lemmens and O.W., van Gaans, On non-expansive maps dynamics on strictly convex Banach spaces. Israel J. Math. 171, (2009 Google Scholar), 425–42.
[128] Y., Lim, Hilbert's projective metric on Lorentz cones and Birkhoff formula for Lorentzian compressions. Linear Algebra Appl. 423(2–3), (2007 Google Scholar), 246–54.
[129] N., Linial, A., Samorodnitsky, and A., Wigderson, A deterministic strongly polynomial algorithm for matrix scaling and approximate permanents. Combinatorica 20(4), (2000 Google Scholar), 545–68.
[130] B., Lins, Asymptotic Behavior and Denjoy–Wolff Theorems for Hilbert Metric Nonexpansive Maps. PhD. thesis, Rutgers University, New Brunswick, NJ, 2007 Google Scholar.
[131] B., Lins, A Denjoy–Wolff theorem for Hilbert metric nonexpansive maps on a polyhedral domain. Math. Proc. Cambridge. Philos. Soc. 143(1), (2007 Google Scholar), 157–64.
[132] B., Lins, Asymptotic behavior of nonexpansive mappings in finite-dimensional normed spaces. Proc. Amer. Math. Soc. 137(7), (2009 Google Scholar), 2387–92.
[133] B., Lins and R., Nussbaum, Iterated linear maps on a cone and Denjoy–Wolff theorems. Linear Algebra Appl. 416(2–3), (2006 Google Scholar), 615–26.
[134] B., Lins and R., Nussbaum, Denjoy–Wolff theorems, Hilbert metric nonexpansive maps and reproduction-decimation operators. J. Funct. Anal. 254(9), (2008 Google Scholar), 2365–86.
[135] K., Löwner, Über monotone Matrixfunktionen. Math. Z. 38, (1934 Google Scholar), 177–216.
[136] D., Lubell, A short proof of Sperner's lemma. J. Combin. Theory 1, (1966 Google Scholar), 299.
[137] R., Lyons and R.D., Nussbaum, On transitive and commutative finite groups of isometries. In Fixed Point Theory and Applications, K.-K., Tan, ed., Singapore, World Scientific, 1992 Google Scholar, pp. 189–228.
[138] J., Mallet-Paret and R.D., Nussbaum, Eigenvalues for a class of homogeneous cone maps arising from max-plus operators. Discrete Contin. Dyn. Syst. 8 (2002 Google Scholar), 519–63.
[139] J., Mallet-Paret and R.D., Nussbaum, Generalizing the Krein-Rutman theorem, measures of noncompactness and the fixed point index. J. Fixed Point Theory Appl. 7(1), (2010 Google Scholar), 103–43.
[140] P., Martus, Asymptotic Properties of Nonstationary Operator Sequences in the Nonlinear Case. PhD. thesis, Friedrich-Alexander Universität, Erlangen-Nürnberg, Germany, 1989 Google Scholar.
[141] J.-P., Massias, Majoration explicite de l'ordre maximum d'un élément du groupe symétrique. Ann. Fac. Sci. Toulouse Math. (5) 6(3–4), 269–81, 1984 Google Scholar.
[142] P., Mellon, A general Wolff theorem for arbitrary Banach spaces. Math. Proc. R. Ir. Acad. 104A(2), (2004 Google Scholar), 127–42.
[143] M.V., Menon, Reduction of a matrix with positive elements to a doubly stochastic matrix. Proc. Amer. Math. Soc. 18, (1967 Google Scholar), 244–7.
[144] M.V., Menon, Some spectral properties of an operator associated with a pair of nonnegative matrices. Trans. Amer. Math. Soc. 132, (1968 Google Scholar), 369–75.
[145] M.V., Menon and H., Schneider, The spectrum of a nonlinear operator associated with a matrix. Linear Algebra Appl. 2, (1969 Google Scholar), 321–34.
[146] L.D., Meshalkin, Generalization of Sperner's theorem on the number of subsets of a finite set (in Russian). Teor. Veroyatn. Primen. 8, (1963 Google Scholar), 219–20.
[147] W., Miller, The maximum order of an element of a? nite symmetric group. Amer. Math. Monthly 94(6), (1987 Google Scholar), 497–506.
[148] H., Minc, Nonnegative Matrices. Wiley-Interscience Series in Discrete Mathematics and Optimization, New York, John Wiley & Sons, 1988 Google Scholar.
[149] M., Misiurewicz, Rigid sets in finite-dimensional l1-spaces. Technical Report 45, Mathematica Göttingensis Schriftenreihe des Sonderforschungsbereichs Geometrie und Analysis, Göttingen, Mathematisches Institut, George-August-Universität Göttingen, 1987 Google Scholar.
[150] M., Morishima. Equilibrium, Stability and Growth. Oxford, Clarendon Press, 1964 Google Scholar
[151] B., de Sz.Nagy, Sur les lattis linéaires de dimension finie. Comment. Math. Helv. 17, (1945 Google Scholar), 209–13.
[152] A., Neyman, Stochastic games and nonexpansive maps. In Stochastic Games and Applications (Stony Brook, NY, 1999), A., Neyman and S., Sorin, eds., NATO Science Series C: Mathematical and Physical Sciences, 570, Dordrecht, Kluwer Academic Publishers, 2003 Google Scholar, pp. 397–415.
[153] P., Nowosad, On the integral equation kf = 1/f arising in a problem in communication. J. Math. Anal. Appl. 14, (1966 Google Scholar), 484–92.
[154] R.D., Nussbaum, A generalization of the Ascoli theorem and an application to functional differential equations. J. Math. Anal. Appl. 35, (1971 Google Scholar), 600–10.
[155] R.D., Nussbaum, Eigenvectors of nonlinear positive operators and the linear Krein-Rutman theorem. In Fixed Point Theory, E., Fadell and G., Fournier, eds., Lecture Notes in Mathematics, 886, Berlin, Springer Verlag, 1981 Google Scholar, pp. 309–331.
[156] R.D., Nussbaum, Convexity and log convexity for the spectral radius. Linear Algebra Appl. 73, (1986 Google Scholar), 59–122.
[157] R.D., Nussbaum, Iterated nonlinear maps and Hilbert's projective metric: A summary. In Dynamics of Infinite-Dimensional Systems (Lisbon, 1986), NATO Advanced Science Institutes Series F: Computer and Systems Science, 37, Berlin, Springer Verlag, 1987 Google Scholar, pp. 231–248.
[158] R.D., Nussbaum, Hilbert's projective metric and iterated nonlinear maps. Mem. Amer. Math. Soc. 391, (1988 Google Scholar), 1–137.
[159] R.D., Nussbaum, Iterated nonlinear maps and Hilbert's projective metric, II, Mem. Amer. Math. Soc. 401, (1989 Google Scholar), 1–118.
[160] R. D., Nussbaum, Omega limit sets of nonexpansive maps: Finiteness and cardinality estimates. Differential Integral Equations 3(3), (1990 Google Scholar), 523–40.
[161] R.D., Nussbaum, Estimates of the periods of periodic points of nonexpansive operators. Israel J. Math. 76(3), (1991 Google Scholar), 345–80.
[162] R.D., Nussbaum, Convergence of iterates of a nonlinear operator arising in statistical mechanics. Nonlinearity 4(4), (1991 Google Scholar), 1223–40.
[163] R.D., Nussbaum, Entropy minimization, Hilbert's projective metric, and scaling integral kernels. J. Funct. Anal. 115(1), (1993 Google Scholar), 45–99.
[164] R.D., Nussbaum, Finsler structures for the part metric and Hilbert's projective metric and applications to ordinary differential equations. Differential Integral Equations 7(5–6), (1994 Google Scholar), 1649–1707.
[165] R.D., Nussbaum, Lattice isomorphisms and iterates of nonexpansive maps. Nonlinear Anal. 22(8), (1994 Google Scholar), 945–70.
[166] R.D., Nussbaum, Eigenvectors of order-preserving linear operators. J. Lond. Math. Soc. 58, (1998 Google Scholar), 480–96.
[167] R.D., Nussbaum, Periodic points of positive linear operators and Perron–Frobenius operators. Integral Equations Operator Theory 39, (2001 Google Scholar), 41–97.
[168] R.D., Nussbaum, Fixed Point Theorems and Denjoy–Wolff Theorems for Hilbert's Projective Metric in Infinite Dimensions. Topol. Methods Nonlinear Anal. 29(2), (2007 Google Scholar), 199–250.
[169] R.D., Nussbaum and M., Scheutzow, Admissible arrays and a generalization of Perron-Frobenius theory. J. Lond. Math. Soc. 58(2), (1998 Google Scholar), 526–44.
[170] R.D., Nussbaum, M., Scheutzow, and S.M. Verduyn, Lunel, Periodic points of nonexpansive maps and nonlinear generalizations of the Perron–Frobenius theory. Selecta Math. (N.S.) 4(1), (1998 Google Scholar), 1–41.
[171] R.D., Nussbaum and S.M. Verduyn, Lunel, Generalizations of the Perron–Frobenius theorem for nonlinear maps. Mem. Amer. Math. Soc. 138(659), (1999 Google Scholar), 1–98.
[172] R.D., Nussbaum and S.M. Verduyn, Lunel, Asymptotic estimates for the periods of periodic points of non-expansive maps. Ergodic Theory Dynam. Systems 23, (2003 Google Scholar), 1199–1226.
[173] R.D., Nussbaum and B.J., Walsh, Approximations by polynomials with nonnegative coefficients and the spectral theory of positive operators. Trans. Amer. Math. Soc. 350, (1998 Google Scholar), 2367–91.
[174] Y., Oshime, An extension of Morishima's nonlinear Perron–Frobenius theorem. J. Math. Kyoto Univ. 23(4), (1983 Google Scholar), 803–30.
[175] A.M., Ostrowski, On positive matrices. Math. Ann. 150, (1963 Google Scholar), 276–84.
[176] A.M., Ostrowski, Positive matrices and functional analysis. In Recent Advances in Matrix Theory, Madison, WI, University of Wisconsin Press, 1964 Google Scholar, pp. 81–101.
[177] A., Papadopoulos, Metric Spaces, Convexity and Nonpositive Curvature. IRMA Lectures in Mathematics and Theoretical Physics, 6, Zürich, European Mathematical Society Publishing House, 2005 Google Scholar.
[178] B.N., Parlett and T.L., Landis, Methods for scaling to doubly stochastic form. Linear Algebra Appl. 48, (1982 Google Scholar), 53–79.
[179] O., Perron, Grundlagen für eine Theorie des Jacobischen Kettenbruchalgorithmus. Math. Ann. 64, (1907 Google Scholar), 1–76.
[180] O., Perron, Zur Theorie der Über Matrizen. Math. Ann. 64, (1907 Google Scholar), 248–63.
[181] B.B., Phadke, A triangular world with hexagonal circles. Geom. Dedicata 3, (1975 Google Scholar), 511–20.
[182] P., Poláčik and I., Tereščak, Convergence to cycles as a typical asymptotic behavior in smooth strongly monotone discrete-time dynamical systems. Arch. Ration. Mech. Anal. 116(4), (1992 Google Scholar), 339–60.
[183] A.J.B., Potter, Applications of Hilbert's projective metric to certain classes of non- homogeneous operators. Quart. J. Math. Oxford Ser. (2) 28, (1977 Google Scholar), 93–9.
[184] H., Rademacher, Über partielle und totale Differenzierbarkeit von Funktionenmehrerer Variabeln und über die Transformation der Doppelintegrale. Math. Ann. 79 Google Scholar, 340–59.
[185] C.E., Rickart, General Theory of Banach Algebras. University Series in Higher Mathematics, Princeton, NJ, van Nostrand, 1960 Google Scholar
[186] R.T., Rockafellar, Convex Analysis. Princeton Landmarks in Mathematics, Princeton, NJ, Princeton University Press, 1997 Google Scholar.
[187] R.T., Rockafellar and R. J.-B., Wets, Variational Analysis. Grundlehren der Mathematischen Wissenschaften, 317, Berlin, Springer Verlag, 1998 Google Scholar.
[188] U.G., Rothblum, Generalized scalings satisfying linear equations. Linear Algebra Appl. 114/115, (1989 Google Scholar), 765–83.
[189] U.G., Rothblum, H., Schneider, and M.H., Schneider, Scaling matrices to prescribed row and column maxima. SIAM J. Matrix Anal. Appl. 15(1), (1994 Google Scholar), 1–14.
[190] W., Rudin, Functional Analysis. International Series in Pure and Applied Mathematics, New York, McGraw-Hill, 1991 Google Scholar.
[191] W., Rudin, Real and Complex Analysis. Series in Higher Mathematics, New York, McGraw-Hill, 1966 Google Scholar.
[192] H., Samelson, On the Perron–Frobenius theorem. Michigan Math. J. 4, (1957 Google Scholar), 57–9.
[193] H.H., Schaefer, Positive Transformationen in lokalkonvexen halbgeordneten Vektorräumen. Math. Ann. 129, (1955 Google Scholar), 323–9.
[194] H.H., Schaefer, On nonlinear positive operators. Pacific J. Math. 9(3), (1959 Google Scholar), 847–60.
[195] H.H., Schaefer, Some spectral properties of positive linear operators. Pacific J. Math. 10, (1960 Google Scholar), 1009–19.
[196] H.H., Schaefer, Banach Lattices and Positive Operators. Grundlehren der Mathematischen Wissenschaften, 215, New York, Springer Verlag, 1974 Google Scholar.
[197] M., Scheutzow, Periods of nonexpansive operators on finite l1-spaces. European J. Combin. 9, (1988 Google Scholar), 73–8.
[198] M., Scheutzow, Corrections to periods of nonexpansive operators on finite l1- spaces. European J. Combin. 12(2), (1991 Google Scholar), 183.
[199] M.H., Schneider, Matrix scaling, entropy minimization, and conjugate duality, I: Existence conditions. Linear Algebra Appl. 114/115, (1989 Google Scholar), 785–813.
[200] M.H., Schneider, Matrix scaling, entropy minimization, and conjugate duality, II: The dual problem. Math. Programming (Ser. B) 48(1), (1990 Google Scholar), 103–24.
[201] A., Schrijver, Theory of Linear and Integer Programming. Chichester, John Wiley & Sons, 1986 Google Scholar.
[202] E., Seneta, Nonnegative Matrices and Markov Chains, 2nd edn. Springer Series in Statistics, New York, Springer Verlag, 1981 Google Scholar.
[203] L.S., Shapley, Stochastic games. Proc. Natl. Acad. Sci. USA 39, (1953 Google Scholar), 1095–1100.
[204] R., Sine, A nonlinear Perron–Frobenius theorem. Proc. Amer. Math. Soc. 109(2), (1990 Google Scholar), 331–6.
[205] R., Sinkhorn, A relationship between arbitrary positive matrices and doubly stochastic matrices. Ann. Math. Statist. 35, (1964 Google Scholar), 876–9.
[206] R., Sinkhorn and P., Knopp, Concerning nonnegative matrices and doubly stochastic matrices. Pacific J. Math. 21. (1967 Google Scholar), 343–8.
[207] H.L., Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems. Mathematical Surveys and Monographs, 41, Providence, RI, American Mathematical Society, 1995 Google Scholar.
[208] S., Sorin, A First Course on Zero-Sum Repeated Games. Mathématiques et Applications, 37, Berlin, Springer Verlag, 2002 Google Scholar.
[209] E., Sperner, Ein Satz über Untermengen einer endlichen Menge. Math. Z. 27, (1928 Google Scholar), 544–8.
[210] S., Straszewicz, Über exponierte Punkte abgeschlossener Punktmengen. Fund. Math. 24, (1935 Google Scholar), 139–43.
[211] P., Takác, Asymptotic behavior of discrete-time semigroups of sublinear, strongly increasing mappings with applications to biology. Nonlinear Anal. 14(1), (1990 Google Scholar), 35–42.
[212] P., Takác, Convergence in the part metric for discrete dynamical systems in ordered topological cones. Nonlinear Anal. 26(11), (1996 Google Scholar), 1753–77.
[213] B.-S., Tam, On the distinguished eigenvalues of a cone-preserving map. Linear Algebra Appl. 131, (1990 Google Scholar), 17–37.
[214] B.-S., Tam, A cone-theoretic approach to the spectral theory of positive linear operators: The finite-dimensional case. Taiwanese J. Math. 5(2), (2001 Google Scholar), 207–77.
[215] A.E., Taylor, Introduction to Functional Analysis. London, John Wiley & Sons, 1958 Google Scholar.
[216] A.C., Thompson, Generalizations of the Perron–Frobenius Theorem to Operators Mapping a Cone into Itself. PhD. thesis, Newcastle upon Tyne, UK, 1963 Google Scholar.
[217] A.C., Thompson, On certain contraction mappings in a partially ordered vector space. Proc. Amer. Math. Soc. 14, (1963 Google Scholar), 438–43.
[218] A.C., Thompson, On the eigenvalues of some not-necessarily-linear transformations. Proc. Lond. Math. Soc. 15(3), (1965 Google Scholar), 577–98.
[219] J.S., Vandergraft, Spectral properties of matrices which have invariant cones. SIAM J. Appl. Math. 16, (1968 Google Scholar), 1208–22.
[220] C., Walsh, The horofunction boundary of finite-dimensional normed spaces. Math. Proc. Cambridge Philos. Soc. 142(3), (2007 Google Scholar), 497–507.
[221] C., Walsh, The horofunction boundary of the Hilbert geometry. Adv. Geom. 8(4), (2008 Google Scholar), 503–29.
[222] D., Weller, Hilbert's Metric, Part Metric and Self-Mappings of a Cone. PhD. thesis, Universität Bremen, Germany, 1987 Google Scholar.
[223] J.H., Wells and L.R., Williams, Embeddings and Extensions in Analysis. Ergebnisse Mathematik und ihrer Grenzgebiete, 84, Berlin, Springer Verlag, 1975 Google Scholar.
[224] P., Whittle, Optimization Over Time. Vol. I. Dynamic Programming and Stochastic Control. Wiley Series in Probability and Statistics, Chichester, John Wiley & Sons, 1982 Google Scholar.
[225] H., Wielandt, Unzerlegbare, nicht negative Matrizen. Math. Z. 52, (1950 Google Scholar), 642–8.
[226] J., Wolff, Sur l'itération des fonctions bornées. C. R. Acad. Sc. Paris, Serie 1, 182, (1926 Google Scholar), 200–1.
[227] J., Wolff, Sur une généralisation d'un théoreme de Schwartz. C. R. Acad. Sc. Paris, Serie 1, 183, (1926 Google Scholar), 500–2.
[228] K., Wysocki, Behavior of directions of solutions of differential equations. Differential Integral Equations 5(2), (1992 Google Scholar), 281–305.
[229] K., Yamamoto, Logarithmic order of free distributive lattice. J. Math. Soc. Japan 6, (1954 Google Scholar), 343–53.
[230] P.P., Zabreiko, M.A., Krasnosel'skii, and Yu.V., Pokornyi, On a class of positive linear operators. Funct. Anal. Appl. 5, (1972 Google Scholar), 57–70.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 3557 *
Loading metrics...

Book summary page views

Total views: 5170 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 30th April 2025. This data will be updated every 24 hours.

Usage data cannot currently be displayed.