Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-13T06:49:51.167Z Has data issue: false hasContentIssue false

5 - Co-rotating beam elements

Published online by Cambridge University Press:  05 June 2012

Steen Krenk
Affiliation:
Technical University of Denmark, Lyngby
Get access

Summary

The beam theory of Chapter 4 and the corresponding finite element implementation was formulated in a fixed global frame of reference using the total displacements and rotations. In many cases it may be advantageous to consider the beam element with reference to a local, element-based, coordinate system. Motion of the beam then implies motion of the local frame of reference as well as deformation of the beam element within this frame. The separation of the motion of the element into two parts – a rigid body motion associated with the element-based frame of reference and a deformation of the element within this frame of reference – is called a co-rotating formulation. The co-rotating formulation has a number of advantages, provided it can be demonstrated that the tangent stiffness can be decomposed into the sum of a part associated with the rotation of the element-based frame and a part associated solely with the deformation of the element within this frame of reference. The first advantage is that displacements and rotations within the local frame of reference are small or at most moderate. Therefore, the deformation of the beam can be modeled by approximate beam theory. Secondly, the co-rotating formulation is closely associated with the idea of ‘natural modes’, advocated by Argyris et al. (1979a,b). The idea of the ‘natural modes’ is to consider any increment of the motion of an element as made up of a set of rigid body modes – typically translation and rotation – and a set of deformation modes – representing extension, bending and torsion of the beam element.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Co-rotating beam elements
  • Steen Krenk, Technical University of Denmark, Lyngby
  • Book: Non-linear Modeling and Analysis of Solids and Structures
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511812163.006
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Co-rotating beam elements
  • Steen Krenk, Technical University of Denmark, Lyngby
  • Book: Non-linear Modeling and Analysis of Solids and Structures
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511812163.006
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Co-rotating beam elements
  • Steen Krenk, Technical University of Denmark, Lyngby
  • Book: Non-linear Modeling and Analysis of Solids and Structures
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511812163.006
Available formats
×