Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-13T01:08:04.316Z Has data issue: false hasContentIssue false

1 - Classical Nonlinear Theories of Elasticity of Plates and Shells

Published online by Cambridge University Press:  25 October 2018

Marco Amabili
Affiliation:
McGill University, Montréal
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alijani, F., Amabili, M. 2014 International Journal of Non-linear Mechanics 67, 394404. Non-linear static bending and forced vibrations of rectangular plates retaining non-linearities in rotations and thickness deformation.CrossRefGoogle Scholar
Alijani, F., Amabili, M. 2014 International Journal of Non-linear Mechanics 58, 233257. Non-linear vibrations of shells: A literature review from 2003 to 2013.CrossRefGoogle Scholar
Amabili, M. 2003 Journal of Sound and Vibration 264, 10911125. Comparison of shell theories for large-amplitude vibrations of circular cylindrical shells: Lagrangian approach.CrossRefGoogle Scholar
Amabili, M. 2015 Composite Structures 128, 260273. A new third-order shear deformation theory with non-linearities in shear for static and dynamic analysis of laminated doubly curved shells.CrossRefGoogle Scholar
Alijani, F., Amabili, M. 2015 International Journal of Non-linear Mechanics 69, 109128. Non-linearities in rotation and thickness deformation in a new third-order thickness deformation theory for static and dynamic analysis of isotropic and laminated doubly curved shells.Google Scholar
Amabili, M., Païdoussis, M. P. 2003 Applied Mechanics Reviews 56, 349381. Review of studies on geometrically nonlinear vibrations and dynamics of circular cylindrical shells and panels, with and without fluid-structure interaction.CrossRefGoogle Scholar
Amabili, M., Reddy, J. N. 2010 International Journal of Non-linear Mechanics 45, 409418. A new non-linear higher-order shear deformation theory for large-amplitude vibrations of laminated doubly curved shells.CrossRefGoogle Scholar
Budiansky, B. 1968 Journal of Applied Mechanics 35, 393401. Notes on nonlinear shell theory.CrossRefGoogle Scholar
Carrera, E., Brischetto, S., Cinefra, M., Soave, M., 2011, Composites: Part B 42, 123133. Effects of thickness stretching in functionally graded plates and shells.CrossRefGoogle Scholar
Cauchy, A. L. 1828 Exercises de Mathematique 3, 328355. Su l’équilibre et le mouvement d’une plaque solide.Google Scholar
Chu, H.-N., Herrmann, G. 1956 Journal of Applied Mechanics 23, 532540. Influence of large amplitude on free flexural vibrations of rectangular elastic plates.CrossRefGoogle Scholar
Dennis, S. T., Palazotto, A. N. 1990 International Journal of Non-Linear Mechanics 25, 6785. Large displacement and rotation formulation for laminated shells including parabolic transverse shear.CrossRefGoogle Scholar
Donnell, L. H. 1934 Transactions of the ASME 56, 795806. A new theory for the buckling of thin cylinders under axial compression and bending.Google Scholar
Fung, Y. C. 1965 Foundations of Solid Mechanics. Prentice-Hall, Englewood Cliffs, NJ, USA.Google Scholar
Ginsberg, J. H. 1973 ASME Journal of Applied Mechanics 40, 471477. Large-amplitude forced vibrations of simply supported thin cylindrical shells.CrossRefGoogle Scholar
Gummadi, L. N. B., Palazotto, A. N. 1999 AIAA Journal 37, 14891494. Nonlinear dynamic finite element analysis of composite cylindrical shells considering large rotations.CrossRefGoogle Scholar
Gutiérrez Rivera, M. E., Reddy, J. N., Amabili, M. 2016 Composite Structures 151, 183196. A new twelve-parameter spectral/hp shell finite element for large deformation analysis of composite shells.CrossRefGoogle Scholar
von Kármán, T. 1910 Festigkeitsprobleme im Maschinenbau. Encyklopadie der Mathematischen Wissenschaften. Vol. 4, Heft 4, 311385.Google Scholar
von Kármán, T., Tsien, H.-S. 1941 Journal of the Aeronautical Sciences 8, 303312. The buckling of thin cylindrical shells under axial compression.CrossRefGoogle Scholar
Kirchhoff, G. 1850 Journal für die Reine und Angewandte Mathematik (Crelle’s) 40, 5188. Uber das gleichgewicht und die bewegung einer elastischen scheibe.Google Scholar
Kobayashi, Y., Leissa, A. W. 1995 International Journal of Non-Linear Mechanics 30, 5766. Large-amplitude free vibration of thick shallow shells supported by shear diaphragms.CrossRefGoogle Scholar
Koiter, W. T. 1966 Proceedings Koninklijke Nederlandse Akademie van Wetenschappen B 69, 154. On the nonlinear theory of thin elastic shells. I, II, III.Google Scholar
Libai, A., Simmonds, J. G. 1988 The Nonlinear Theory of Elastic Shells, 2nd edition 1998. Academic Press, London, UK.Google Scholar
Librescu, L. 1987 Quarterly of Applied Mathematics 45, 122. Refined geometrically nonlinear theories of anisotropic laminated shells.CrossRefGoogle Scholar
Mushtari, Kh. M., Galimov, K. Z. 1957 Non-Linear Theory of Thin Elastic Shells. Academy of Sciences (Nauka), Kazan’; English version, NASA-TT-F62 in 1961.Google Scholar
Naghdi, P. M., Nordgren, R. P. 1963 Quarterly of Applied Mathematics 21, 4959. On the nonlinear theory of elastic shells under the Kirchhoff hypothesis.CrossRefGoogle Scholar
Novozhilov, V.V . 1953 Foundations of the Nonlinear Theory of Elasticity. Graylock Press, Rochester, NY, USA (now available from Dover, NY, USA).Google Scholar
Pai, P. F., Nayfeh, A .H. 1994 Nonlinear Dynamics 6, 459500. A unified nonlinear formulation for plate and shell theories.CrossRefGoogle Scholar
Payette, G. S., Reddy, J. N. 2014 Computer Methods in Applied Mechanics and Engineering 278, 664704. A seven-parameter spectral/hp finite element formulation for isotropic, laminated composite and functionally graded shell structures.CrossRefGoogle Scholar
Poisson, S. D. 1829 Mémoires de l’Académie Royale des Sciences de l’Institut 8, 357570. Mémoire sur l’eguilibre et le mouvement des corp élastique.Google Scholar
Reddy, J. N. 1984 Journal of Engineering Mechanics 110, 794809. Exact solutions of moderately thick laminated shells.CrossRefGoogle Scholar
Reddy, J. N. 1990 International Journal of Non-Linear Mechanics 25, 677686. A general non-linear third-order theory of plates with moderate thickness.CrossRefGoogle Scholar
Reddy, J. N. 2003. Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, 2nd edition. CRC Press, Boca Raton, FL, USA.CrossRefGoogle Scholar
Reddy, J. N., Chandrashekhara, K. 1985 International Journal of Non-Linear Mechanics 20, 7990. Geometrically non-linear transient analysis of laminated, doubly curved shells.CrossRefGoogle Scholar
Reddy, J. N., Liu, C. F. 1985 International Journal of Engineering Science 23, 319330. A higher-order shear deformation theory of laminated elastic shells.CrossRefGoogle Scholar
Sanders, J. L. Jr. 1963 Quarterly of Applied Mathematics 21, 2136. Nonlinear theories for thin shells.CrossRefGoogle Scholar
Sansour, C., Wriggers, P., Sansour, J. 1997 Nonlinear Dynamics 13, 279305. Nonlinear dynamics of shells: theory, finite element formulation, and integration schemes.CrossRefGoogle Scholar
Soldatos, K. P. 1992 Journal of Pressure Vessel Technology 114, 105109. Nonlinear analysis of transverse shear deformable laminated composite cylindrical shells – Part I: Derivation of governing equations.CrossRefGoogle Scholar
Stoker, J. J. 1968 Nonlinear Elasticity. Gordon and Breach, New York, USA.Google Scholar
Tsai, C. T., Palazotto, A. N. 1991 International Journal of Non-Linear Mechanics 26, 379388. On the finite element analysis of non-linear vibration for cylindrical shells with high-order shear deformation theory.CrossRefGoogle Scholar
Vorovich, I. I. 1999 Nonlinear Theory of Shallow Shells. Springer-Verlag, New York.Google Scholar
Yamaki, N. 1984 Elastic Stability of Circular Cylindrical Shells. North-Holland, Amsterdam.Google Scholar
Zhou, Y.-H., Tzou, H. S. 2000 International Journal of Solids and Structures 37, 16631677. Active control of nonlinear piezoelectric circular shallow spherical shells.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×