Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-12T20:05:27.286Z Has data issue: false hasContentIssue false

6 - Chaotic sets and chaotic attractors

Published online by Cambridge University Press:  14 May 2010

Alfredo Medio
Affiliation:
Universita Ca'Foscari, Venezia
Marji Lines
Affiliation:
Università degli Studi di Udine, Italy
Get access

Summary

Invariant, attracting sets and attractors with a structure more complicated than that of periodic or quasiperiodic sets are called chaotic. Before providing precise mathematical definitions of the properties of chaotic systems, let us first try to describe them in a broad, nonrigorous manner. We say that a discrete- or continuous-time dynamical system is chaotic if its typical orbits are aperiodic, bounded and such that nearby orbits separate fast in time. Chaotic orbits never converge to a stable fixed or periodic point, but exhibit sustained instability, while remaining forever in a bounded region of the state space. They are, as it were, trapped unstable orbits. To give an idea of these properties, in figure 6.1 we plot a few iterations of a chaotic discrete-time map on the interval, with slightly different initial values. The two trajectories remain close for the first few iterations, after which they separate quickly and have thereafter seemingly uncorrelated evolutions. Time series resulting from numerical simulations of such trajectories look random even though they are generated by deterministic systems, that is, systems that do not include any random variables. Also, the statistical analysis of deterministic chaotic series by means of certain linear techniques, such as estimated autocorrelation functions and power spectra, yields results similar to those determined for random series. Both cases are characterised by a rapidly decaying autocorrelation function and a broadband power spectrum.

remark 6.1 Notice that one or another (but not all) of the properties listed above can be found in nonchaotic systems as well.

Type
Chapter
Information
Nonlinear Dynamics
A Primer
, pp. 163 - 192
Publisher: Cambridge University Press
Print publication year: 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×