Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-06T02:21:17.211Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  30 March 2017

Billy D. Todd
Affiliation:
Swinburne University of Technology, Victoria
Peter J. Daivis
Affiliation:
Royal Melbourne Institute of Technology
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Nonequilibrium Molecular Dynamics
Theory, Algorithms and Applications
, pp. 335 - 354
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Todd, B. D. and Daivis, P. J.. Homogeneous non-equilibrium molecular dynamics simulations of viscous flow: techniques and applications. Mol. Simul., 33: 189, 2007.Google Scholar
[2] Evans, D. J. and Morriss, G. P.. Statistical Mechanics of Nonequilibrium Liquids. Cambridge University Press, Cambridge, 2nd edition, 2008.
[3] McQuarrie, D. A. Statistical Mechanics. Harper Collins, New York, 1976.
[4] de Groot, S. R. and Mazur, P.. Non-Equilibrium Thermodynamics. Dover, New York, 1984.
[5] Allen, M. P. and Tildesley, D. J.. Computer Simulation of Liquids. Clarendon Press, Oxford, 1987.
[6] Rapaport, D. The Art of Molecular Dynamics Simulation. Cambridge University Press, Cambridge, 1995.
[7] Frenkel, D. and Smit, B.. Understanding Molecular Simulation: From Algorithms to Applications. Academic Press, San Diego, 2002.
[8] Sadus, R. J. Molecular Simulation of Fluids: Theory, Algorithms and Object-Orientation. Elsevier, Amsterdam, 1999.
[9] Alder, B. J. and Wainwright, T. E.. Phase transition for a hard sphere system. J. Chem. Phys., 27: 1208, 1957.Google Scholar
[10] Rahman, A. Correlations in the motion of atoms in liquid argon. Phys. Rev., 136: A105, 1964.Google Scholar
[11] Verlet, L. Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys. Rev., 159: 98, 1967.Google Scholar
[12] Alder, B. J., Gass, D. M., and Wainwright, T. E.. Studies in molecular dynamics. VIII. The transport coefficients for a hard-sphere fluid. J. Chem. Phys., 53: 3813, 1970.Google Scholar
[13] Green, M. S. Markoff random processes and the statistical mechanics of time-dependent phenomena. II. Irreversible processes in fluids. J. Chem. Phys., 22: 398, 1954.Google Scholar
[14] Kubo, R. Statistical-mechanical theory of irreversible processes. 1. General theory and simple applications to magnetic and conduction problems. J. Phys. Soc. Japan, 12: 570, 1957.Google Scholar
[15] Lees, A. W. and Edwards, S. F.. The computer study of transport processes under extreme conditions. J. Phys. C, 5: 1921, 1972.Google Scholar
[16] Gosling, E. M., McDonald, I. R., and Singer, K.. On the calculation by molecular dynamics of the shear viscosity of a simple fluid. Mol. Phys., 26: 1475, 1973.Google Scholar
[17] Ashurst, W. T. and Hoover, W. G. Dense-fluid shear viscosity via nonequilibrium molecular dynamics. Phys. Rev. A, 11: 658, 1975.Google Scholar
[18] Hoover, W. G. Atomistic nonequilibrium computer simulations. Physica, 118A: 111, 1983.Google Scholar
[19] Hoover, W. G. Nonequilibrium molecular dynamics: the first 25 years. Physica A, 194: 450, 1993.Google Scholar
[20] Hoover, W. G., Evans, D. J., Hickman, R. B., Ladd, A. J. C., Ashurst, W. T., and Moran, B.. Lennard-Jones triple-point bulk and shear viscosities. Green–Kubo theory, Hamiltonian mechanics, and nonequilibrium molecular dynamics. Phys. Rev. A, 22: 1690, 1980.Google Scholar
[21] Evans, D. J. and Morriss, G. P. Nonlinear-response theory for steady planar Couette flow. Phys. Rev. A, 30(3): 1528, 1984.Google Scholar
[22] Ciccotti, G. and Jacucci, G.. Direct computation of dynamical response by molecular dynamics: The mobility of a charged Lennard-Jones particle. Phys. Rev. Lett., 35: 789, 1975.Google Scholar
[23] Evans, D. J. and Morriss, G. P. Transient-time-correlation functions and the rheology of fluids. Phys. Rev. A, 38: 4142, 1988.Google Scholar
[24] Müller-Plathe, F.. Reversing the perturbation in nonequilibrium molecular dynamics: An easy way to calculate the shear viscosity of fluids. Phys. Rev. E, 59: 4894, 1999.Google Scholar
[25] Hafskjold, B., Ikeshoji, T., and Kjelstrup Ratkje, S.. On the molecular mechanism of thermal diffusion in liquids. Mol. Phys., 80: 1389, 1993.Google Scholar
[26] Jou, D., Lebon, G., and Casas-Vázquez, J.. Extended Irreversible Thermodynamics. Springer, 4th edition, 2010.
[27] Öttinger, H. C.. Beyond Equilibrium Thermodynamics. John Wiley & Sons, Hoboken, New Jersey, 2005.
[28] Bird, R. B., Armstrong, R. C., and Hassager, O.. Dynamics of Polymeric Liquids, Volume 1 Fluid Mechanics. John Wiley & Sons, New York, 2nd edition, 1987.
[29] Bird, R. B. Curtiss, C. F. Armstrong, R. C. and Hassager, O. Dynamics of Polymeric Liquids, Volume 2 Kinetic Theory. John Wiley & Sons, New York, 2nd edition, 1987.
[30] Tanner, R. I. Engineering Rheology. Oxford University Press, 2nd edition, 2000.
[31] Huilgol, R. R. and Phan-Thien, N. Fluid Mechanics of Viscoelasticity. Elsevier, Amsterdam, 1997.
[32] Truesdell, C. and Noll, W. The Non-Linear Field Theories of Mechanics. Springer-Verlag, 3rd edition, 2004.
[33] Juretschke, H. J. Crystal Physics. W. A. Benjamin Inc., 1974.
[34] de Gennes, P. G. and Prost, J. The Physics of Liquid Crystals. Oxford University Press, 2nd edition, 1993.
[35] Snider, R. F. and Lewchuk, K. S. Irreversible thermodynamics of a fluid system with spin. J. Chem. Phys., 46: 3163, 1967.Google Scholar
[36] Evans, D. J. and Streett, W. B. Transport properties of homonuclear diatomics II. Dense fluids. Mol. Phys., 36: 161, 1978.Google Scholar
[37] McLennan, J. A. Introduction to Nonequilibrium Statistical Mechanics. Prentice Hall, New Jersey, 1989.
[38] Eu, B. C. Nonequilibrium Statistical Mechanics: Ensemble Method. Kluwer Academic, 1998.
[39] Zwanzig, R. Nonequilibrium Statistical Mechanics. Oxford University Press, 2001.
[40] Zubarev, D. N. Morozov, V. G. and Röpke, G. Statistical Mechanics of Nonequilibrium Processes. Akademie Verlag, 1996.
[41] Gaspard, P. Chaos, Scattering and Statistical Mechanics. Cambridge University Press, 1998.
[42] Goldstein, H. Classical Mechanics. Addison-Wesley, Reading, MA, 1980.
[43] Tolman, R. C. The Principles of Statistical Mechanics. Dover reprinting of the 1938 edition published by Oxford University Press, 1979.
[44] Williams, S. R. and Evans, D. J. Time-dependent response theory and nonequilibrium freeenergy relations. Phys. Rev. E, 78: 021119, 2008.
[45] Yamada, T. and Kawasaki, K. Nonlinear effects in shear viscosity of critical mixtures. Prog. Theor. Phys., 38: 1031, 1967.Google Scholar
[46] Yamada, T. and Kawasaki, K. Application of mode-coupling theory to nonlinear stress tensor in fluids. Prog. Theor. Phys., 53: 111, 1975.Google Scholar
[47] Kawasaki, K. and Gunton, J. D. Theory of nonlinear transport processes: Nonlinear shear viscosity and normal stress effects. Phys. Rev. A, 8: 2048, 1973.Google Scholar
[48] Visscher, W. M. Transport processes in solids and linear-response theory. Phys. Rev. A, 10: 2461, 1974.Google Scholar
[49] Dufty, J. W. and Lindenfeld, M. J. Nonlinear transport in the Boltzmann limit. J. Stat. Phys., 20: 259, 1979.Google Scholar
[50] Cohen, D. E. G. Kinetic theory of non-equilibrium fluids. Physica A, 118: 17, 1983.Google Scholar
[51] Morriss, G. P. and Evans, D. J. Isothermal response theory. Mol. Phys., 54: 629, 1985.Google Scholar
[52] Morriss, G. P. and Evans, D. J. Application of transient correlation-functions to shear-flow far from equilibrium. Phys. Rev. A, 35: 792, 1987.Google Scholar
[53] Todd, B. D. Application of transient time correlation functions to nonequilibrium molecular dynamics simulations of elongational flow. Phys. Rev. E, 56: 6723–6728, 1997.Google Scholar
[54] Petravic, J. and Evans, D. J. Nonlinear response for time-dependent external fields. Phys. Rev. Lett., 78: 1199, 1997.Google Scholar
[55] Petravic, J. and Evans, D. J. Nonlinear response for nonautonomous systems. Phys. Rev. E, 56: 1207, 1997.Google Scholar
[56] Petravic, J. and Evans, D. J. Approach to the non-equilibrium time-periodic state in a “steady” shear flow model. Mol. Phys., 95: 219, 1998.Google Scholar
[57] Petravic, J. and Evans, D. J. Nonlinear response theory for time-dependent external fields: Shear flow and color conductivity. Int. J. Thermophys., 19: 1049, 1998.Google Scholar
[58] Petravic, J. and Evans, D. J. Time dependent nonlinear response theory. Trends in Statistical Physics, 2: 85, 1998.Google Scholar
[59] Petravic, J. and Evans, D. J. The Kawasaki distribution function for nonautonomous systems. Phys. Rev. E, 58: 2624, 1998.Google Scholar
[60] Todd, B. D. Nonlinear response theory for time-periodic elongational flows. Phys. Rev. E, 58: 4587, 1998.Google Scholar
[61] Hansen, J. P. and McDonald, I. R. Theory of Simple Liquids. Academic Press, New York, 1986.
[62] Heyes, D. M. The Liquid State: Applications of Molecular Simulations. Wiley, Chichester, 1997.
[63] Daivis, P. J. and Evans, D. J. Comparison of constant pressure and constant volume nonequilibrium simulations of sheared model decane. J. Chem. Phys., 100: 541, 1994.Google Scholar
[64] Evans, D. J. Cohen, E. G. D. and Morriss, G. P. Probability of 2nd law violations in shearing steady-states. Phys. Rev. Lett., 71: 2401, 1993.Google Scholar
[65] Lorenz, E. N. Deterministic nonperiodic flow. J. Atmos. Sci., 20: 130, 1963.Google Scholar
[66] Weeks, J. D. Chandler, D. and Andersen, H. C. Role of repulsive forces in determining the equilibrium structure of simple liquids. J. Chem. Phys., 54: 5237, 1971.Google Scholar
[67] Evans, D. J. and Searles, D. J. Equilibrium microstates which generate second law violating steady states. Phys. Rev. E, 50: 1645, 1994.Google Scholar
[68] Gallavotti, G. and Cohen, E. G. D. Dynamical ensembles in nonequilibrium statistical mechanics. Phys. Rev. Lett., 74: 2694, 1995.Google Scholar
[69] Wang, G. M. Sevick, E. M. Mittag, E. Searles, D. J. and Evans, D. J. Experimental demonstration of violations of the second law of thermodynamics for small systems and short time scales. Phys. Rev. Lett., 89: 050601, 2002.Google Scholar
[70] Maxwell, J. C. Tait's “Thermodynamics” II. Nature, 17: 278, 1878.Google Scholar
[71] Evans, D. J. and Searles, D. J. The fluctuation theorem. Advances in Physics, 51: 1529, 2002.Google Scholar
[72] Bustamante, C. Liphardt, J. and Ritort, F. The nonequilibrium thermodynamics of small systems. Physics Today, 58: 43, 2005.Google Scholar
[73] Evans, D. J. Searles, D. J. and Williams, S. R. Fundamentals of Classical Statistical Thermodynamics: Dissipation, Relaxation and Fluctuation Theorems. Wiley, 2016.
[74] Evans, D. J. Searles, D. J. and Rondoni, L. Application of the Gallavotti-Cohen fluctuation relation to thermostated steady states near equilibrium. Phys. Rev. E, 71: 056120, 2005.Google Scholar
[75] Evans, D. J. Searles, D. J. and Williams, S. R. On the fluctuation theorem for the dissipation function and its connection with response theory. J. Chem. Phys., 128: 014504, 2008.Google Scholar
[76] Jarzynski, C. Nonequilibrium equality for free energy differences. Phys. Rev. Lett., 78: 2690, 1997.Google Scholar
[77] Jarzynski, C. Equilibrium free-energy differences from nonequilibrium measurements: A master-equation approach. Phys. Rev. E, 56: 5018, 1997.Google Scholar
[78] Crooks, G. E. Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. Phys. Rev. E, 60: 2721, 1999.Google Scholar
[79] Crooks, G. E. Nonequilibrium measurements of free energy differences for microscopically reversible Markovian systems. J. Stat. Phys., 90: 1481, 1998.Google Scholar
[80] Casas-Vázquez, J. and Jou, D. Temperature in non-equilibrium states: a review of open problems and current proposals. Rep. Prog. Phys., 66: 1937, 2003.Google Scholar
[81] Jepps, O. G. Ayton, G. and Evans, D. J. Microscopic expressions for the thermodynamic temperature. Phys. Rev. E, 62: 4757, 2000.Google Scholar
[82] Rickayzen, G. and Powles, J.G. Temperature in the classical microcanonical ensemble. J. Chem. Phys., 114: 4333, 2001.Google Scholar
[83] Rugh, H. H. Dynamical approach to temperature. Phys. Rev. Lett., 78: 772, 1997.Google Scholar
[84] Baranyai, A. Temperature of nonequilibrium steady-state systems. Phys. Rev. E, 62: 5989, 2000.Google Scholar
[85] Irving, J. H. and Kirkwood, J. G. The statistical mechanical theory of transport processes. 4. The equations of hydrodynamics. J. Chem. Phys., 18: 817, 1950.Google Scholar
[86] Todd, B. D. Evans, D. J. and Daivis, P. J. Pressure tensor for inhomogeneous fluids. Phys. Rev. E, 52: 1627, 1995.Google Scholar
[87] Monaghan, D. R. J. and Morriss, G. P. Microscopic study of steady convective flow in periodic systems. Phys. Rev. E, 56: 476, 1997.Google Scholar
[88] Todd, B. D. Daivis, P. J. and Evans, D. J. Heat flux vector in highly inhomogeneous nonequilibrium fluids. Phys. Rev. E, 51: 4362, 1995.Google Scholar
[89] Daivis, P. J. Travis, K. P. and Todd, B.D. A technique for the calculation of mass, energy and momentum densities at planes in molecular dynamics simulations. J. Chem. Phys., 104: 9651, 1996.Google Scholar
[90] Jepps, O.G. and Bhatia, S. K. Method for determining the shear stress in cylindrical systems. Phys. Rev. E, 67: 041206, 2003.Google Scholar
[91] Heyes, D. M. Smith, E. R. Dini, D. and Zaki, T. A. The method of planes pressure tensor for a spherical subvolume. J. Chem. Phys., 140: 054506, 2014.Google Scholar
[92] Heyes, D. M. Smith, E. R. Dini, D. and Zaki, T. A. The equivalence between volume averaging and method of planes definitions of the pressure tensor. J. Chem. Phys., 135: 024512, 2011.Google Scholar
[93] Hardy, R. J. Formulas for determining local properties in molecular-dynamics simulations: Shock waves. J. Chem. Phys., 76: 622, 1982.Google Scholar
[94] Cormier, J. Rickman, J. M. and Delph, T. J. Stress calculation in atomistic simulations of perfect and imperfect solids. J. Appl. Phys., 89: 99, 2001.Google Scholar
[95] Hartkamp, R. Hunt, T. A. and Todd, B. D. A method-of-planes approach for the calculation of position-dependent self-diffusion coefficients in confined fluids. Unpublished.
[96] Travis, K. P. Todd, B. D. and Evans, D. J. Departure from Navier-Stokes hydrodynamics in confined liquids. Phys. Rev. E, 55: 4288, 1997.Google Scholar
[97] Lee, S. H. and Cummings, P. T. Shear viscosity of model mixtures by nonequilibrium molecular dynamics. I. Argon-krypton mixtures. J. Chem. Phys., 99: 3919, 1993.Google Scholar
[98] Lee, S. H. and Cummings, P. T. Effect of three-body forces on the shear viscosity of liquid argon. J. Chem. Phys., 101: 6206, 1994.Google Scholar
[99] Marcelli, G. Todd, B. D. and Sadus, R. J. Analytic dependence of the pressure and energy of an atomic fluid under shear. Phys. Rev. E, 63: 021204, 2001.Google Scholar
[100] Zhang, J. and Todd, B. D. Pressure tensor and heat flux vector for confined nonequilibrium fluids under the influence of three-body forces. Phys. Rev. E, 69: 031111, 2004.Google Scholar
[101] Barker, J. A. Fisher, R. A. and Watts, R. O. Liquid argon: Monte Carlo and molecular dynamics calculations. Mol. Phys., 21: 657, 1971.Google Scholar
[102] Axilrod, B. M. and Teller, E. Interaction of the van der Waals’ type between three atoms. J. Chem. Phys., 11: 299, 1943.Google Scholar
[103] Torii, D. Nakano, T. and Ohara, T. Contribution of inter- and intramolecular energy transfers to heat conduction in liquids. J. Chem. Phys., 128: 044504, 2008.Google Scholar
[104] Lutsko, J. F. Stress and elastic constants in anisotropic solids: Molecular dynamics techniques. J. Appl. Phys., 64: 1152, 1988.Google Scholar
[105] Smith, E. R. Heyes, D. M. Dini, D. and Zaki, T. A. Control-volume representation of molecular dynamics. Phys. Rev. E, 85: 056705, 2012.Google Scholar
[106] Ewald, P. P. The calculation of optical and electrostatic grid potential. Ann. Phys. (Leipzig), 64: 253, 1921.Google Scholar
[107] Lekner, J. Summation of Coulomb fields in computer-simulated disordered systems. Physica A, 176: 485, 1991.Google Scholar
[108] Lekner, J. Coulomb forces and potentials in systems with an orthorhombic unit cell. Molec. Simul., 20: 357, 1998.Google Scholar
[109] Wolf, D. Reconstruction of NaCl surfaces from a dipolar solution to the Madelung problem. Phys. Rev. Lett., 68: 3315, 1992.Google Scholar
[110] Wolf, D. Keblinski, S. R. Phillpot, S. R. and Eggebrecht, J. Exact method for the simulation of Coulombic systems by spherically truncated, pairwise r−1 summation. J. Chem. Phys., 110: 8254, 1999.Google Scholar
[111] Onsager, L. Electric moments of molecules in liquids. J. Am. Chem. Soc., 58: 1486, 1936.Google Scholar
[112] Barker, J. A. and Watts, R. O. Monte-Carlo studies of dielectric properties of water-like models. Mol. Phys., 26: 789, 1973.Google Scholar
[113] Heyes, D. M. Electrostatic potentials and fields in infinite point charge lattices. J. Chem. Phys., 74: 1924, 1981.Google Scholar
[114] Wheeler, D. R. Fuller, N. G. and Rowley, R. L. Non-equilibrium molecular dynamics simulation of the shear viscosity of liquid methanol: Adaption of the Ewald sum to Lees-Edwards boundary conditions. Mol. Phys., 92: 55, 1997.Google Scholar
[115] Alejandre, J. Tildesley, D. J. and Chapela, G. A. Molecular dynamics simulation of the orthobaric densities and surface tension of water. J. Chem. Phys., 102: 4574, 1995.Google Scholar
[116] Heyes, D. M. Pressure tensor of partial-charge and point-dipole lattices with bulk and surface geometries. Phys. Rev. B, 49: 755, 1994.Google Scholar
[117] Nosé, S. and Klein, M. L. Constant pressure molecular dynamics for molecular systems. Molec. Phys., 50: 1055, 1983.Google Scholar
[118] Galamba, N. de Castro, C. A. N., and Ely, J. F. Thermal conductivity of molten alkali halides from equilibrium molecular dynamics simulations. J. Chem. Phys., 120: 8676, 2004.Google Scholar
[119] Petravic, J. Thermal conductivity of ethanol. J. Chem. Phys., 123: 174503, 2005.Google Scholar
[120] Parry, D. E. Electrostatic potential in surface region of an ionic-crystal. Surf. Sci., 49: 433, 1975.Google Scholar
[121] Parry, D. E. Correction. Surf. Sci., 54: 195, 1976.Google Scholar
[122] Heyes, D. M. Barber, M and Clarke, J. H. R. Molecular-dynamics computer-simulation of surface properties of crystalline potassium-chloride. Faraday Trans. II, 73: 1485, 1977.Google Scholar
[123] Muscatello, J. and Bresme, F. A comparison of Coulombic interaction methods in nonequilibrium studies of heat transfer in water. J. Chem. Phys., 135: 234111, 2011.Google Scholar
[124] Fennell, C. J. and Gezelter, J. D. Is the Ewald summation still necessary? pairwise alternatives to the accepted standard for long-range electrostatics. J. Chem. Phys., 124: 234104, 2006.Google Scholar
[125] Evans, D. J. and Morriss, G. P. Non-Newtonian molecular dynamics. Comput. Phys. Rep., 1: 297, 1984.Google Scholar
[126] Hoover, W. G. Hoover, C. G. and Petravic, J. Simulation of two- and three-dimensional dense-fluid shear flows via nonequilibrium molecular dynamics: Comparison of time-andspace-averaged stresses from homogeneous Doll's and Sllod shear algorithms with those from boundary-driven shear. Phys. Rev. E, 78: 046701, 2008.Google Scholar
[127] Ladd, C. A. J. Equations of motion for non-equilibrium molecular dynamics simulations of viscous flow in molecular fluids. Mol. Phys., 53: 459, 1984.Google Scholar
[128] Daivis, P. J. and Todd, B. D. A simple, direct derivation and proof of the validity of the SLLOD equations of motion for generalised homogeneous flows. J. Chem. Phys., 124: 194103, 2006.Google Scholar
[129] Kraynik, A. M. and Reinelt, D. A. Extensional motions of spatially periodic lattices. Int. J. Multiphase Flow, 18: 1045, 1992.Google Scholar
[130] Todd, B. D. and Daivis, P. J. Nonequilibrium molecular dynamics simulations of planar elongational flow with spatially and temporally periodic boundary conditions. Phys. Rev. Lett., 81: 1118, 1998.Google Scholar
[131] Todd, B. D. and Daivis, P. J. A new algorithm for unrestricted duration molecular dynamics simulations of planar elongational flow. Computer Physics Communications, 117: 191, 1999.Google Scholar
[132] Todd, B. D. and Daivis, P. J. The stability of nonequilibrium molecular dynamics simulations of elongational flows. J. Chem. Phys., 112: 40, 2000.Google Scholar
[133] Baranyai, A. and Cummings, P. T. Steady state simulation of planar elongation flow by nonequilibrium molecular dynamics. J. Chem. Phys., 110: 42, 1999.Google Scholar
[134] Hunt, T. A. Bernardi, S. and Todd, B. D. A new algorithm for extended nonequilibrium molecular dynamics simulations of mixed flow. J. Chem. Phys., 133: 154116, 2010.Google Scholar
[135] Bernardi, S. Brookes, S. J. Searles, D. J. and Evans, D. J. Response theory for confined systems. J. Chem. Phys., 137: 074114, 2012.Google Scholar
[136] Bernardi, S. and Searles, D. J. Local response in nanopores. Molec. Simul., 42: 463, 2016.Google Scholar
[137] Baig, C. Edwards, B. J. Keffer, D. J. and Cochran, H. D. A proper approach for nonequilibrium molecular dynamics simulations of planar elongational flow. J. Chem. Phys., 122: 114103, 2005.Google Scholar
[138] Edwards, B. J. Baig, C. and Keffer, D. J. An examination of the validity of nonequilibrium molecular-dynamics simulation algorithms for arbitrary steady-state flows. J. Chem. Phys., 123: 114106, 2005.Google Scholar
[139] Edwards, B. J. Baig, C. and Keffer, D. J. A validation of the p-SLLOD equations of motion for homogeneous steady-state flows. J. Chem. Phys., 124: 194104, 2006.Google Scholar
[140] Edwards, B. J. and Dressler, M. A reversible problem in non-equilibrium thermodynamics: Hamiltonian evolution equations for non-equilibrium molecular dynamics simulations. J. Non-Newtonian Fluid Mech., 96: 163, 2001.Google Scholar
[141] Borzsák, I. Cummings, P. T. and Evans, D. J. Shear viscosity of a simple fluid over a wide range of strain rates. Mol. Phys., 100: 2735, 2002.Google Scholar
[142] Hunt, T. A. and Todd, B. D. On the Arnold cat map and periodic boundary conditions for planar elongational flow. Mol. Phys., 101: 3445, 2003.Google Scholar
[143] Todd, B. D. Cats, maps and nanoflows: Some recent developments in nonequilibrium nanofluidics. Mol. Simul., 31: 411, 2005.Google Scholar
[144] Frascoli, F. Searles, D. J. and Todd, B. D. Chaotic properties of planar elongational flows and planar shear flows: Lyapunov exponents, conjugate-pairing rule and phase space contraction. Phys. Rev. E, 73: 046206, 2006.Google Scholar
[145] Bhupathiraju, R. Cummings, P. T. and Cochran, H. D. An efficient parallel algorithm for non-equilibrium molecular dynamics simulations of very large systems in planar Couette flow. Mol. Phys., 88: 1665, 1996.Google Scholar
[146] Hansen, D. P. and Evans, D. J. A parallel algorithm for nonequilibrium molecular dynamics simulation of shear flow on distributed memory machines. Mol. Simul., 13: 375, 1994.Google Scholar
[147] Todd, B. D. and Daivis, P. J. Elongational viscosities from nonequilibrium molecular dynamics simulations of oscillatory elongational flow. J. Chem. Phys., 107: 1617, 1997.Google Scholar
[148] Baranyai, A. and Cummings, P. T. Nonequilibrium molecular dynamics study of shear and shear-free flows in simple fluids. J. Chem. Phys., 103: 10217, 1995.Google Scholar
[149] Sprott, J. C. Chaos and Time Series Analysis. Oxford University Press, Oxford, 2003.
[150] Katok, A. and Hasselblatt, B. Introduction to the Modern Theory of Dynamical Systems. Cambridge University Press, Cambridge, 1995.
[151] Frascoli, F. Searles, D. J. and Todd, B. D. Boundary condition independence of molecular dynamics simulations of planar elongational flow. Phys. Rev. E, 75: 066702, 2007.Google Scholar
[152] Frascoli, F. Searles, D. J. and Todd, B. D. Chaotic properties of isokinetic-isobaric atomic systems under planar shear and elongational flows. Phys. Rev. E, 77: 056217, 2008.Google Scholar
[153] Evans, D. J. Hoover, W. G. Failor, B. H. Moran, B. and Ladd, A. J. C. Nonequilibrium molecular dynamics via Gauss's principle of least constraint. Phys. Rev. A, 28: 1016, 1983.Google Scholar
[154] Nosé, S. A unified formulation of the constant temperature molecular-dynamics methods. J. Chem. Phys., 81: 511, 1984.Google Scholar
[155] Nosé, S. A molecular-dynamics method for simulations in the canonical ensemble. Mol. Phys., 52: 255, 1984.Google Scholar
[156] Hoover, W. G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A, 31: 1695, 1985.Google Scholar
[157] Butler, B. D. Ayton, G. Jepps, O. G. and Evans, D. J. Configurational temperature: Verification of Monte Carlo simulations. J. Chem. Phys., 109: 6519, 1998.Google Scholar
[158] Lue, L. and Evans, D. J. Configurational temperature for systems with constraints. Phys. Rev. E, 62: 4764, 2000.Google Scholar
[159] Delhommelle, J. and Evans, D. J. Configurational temperature thermostat for fluids undergoing shear flow: application to liquid chlorine. Mol. Phys., 99: 1825, 2001.Google Scholar
[160] Lue, L. Jepps, O. G. Delhommelle, J. and Evans, D. J. Configurational thermostats for molecular systems. Mol. Phys., 100: 2387, 2002.Google Scholar
[161] Delhommelle, J. and Evans, D. J. Correspondence between configurational temperature and molecular kinetic temperature thermostats. J. Chem. Phys., 117: 6016, 2002.Google Scholar
[162] Braga, C. and Travis, K. P. A configurational temperature Nosé-Hoover thermostat. J. Chem. Phys., 123: 134101, 2005.Google Scholar
[163] Travis, K. P. and Braga, C. Configurational temperature and pressure molecular dynamics: review of current methodology and applications to the shear flow of a simple fluid. Mol. Phys., 104: 3735, 2006.Google Scholar
[164] Travis, K. P. and Braga, C. Configurational temperature control for atomic and molecular systems. J. Chem. Phys., 128: 014111, 2008.Google Scholar
[165] Evans, D. J. and Holian, B.L. Shear viscosities away from the melting line a comparison of equilibrium and non-equilibrium molecular-dynamics. J. Chem. Phys., 78: 5147, 1983.Google Scholar
[166] Evans, D. J. and Holian, B. L. The Nosé-Hoover thermostat. J. Chem. Phys., 83: 4069, 1985.Google Scholar
[167] Evans, D. J. and Sarman, S. Equivalence of thermostatted nonlinear responses. Phys. Rev. E, 48: 65, 1993.Google Scholar
[168] Liem, S. Y. Brown, D. and Clarke, J. H. R. Investigation of the homogeneous-shear nonequilibrium-molecular-dynamics method. Phys. Rev. A, 45: 3706, 1992.Google Scholar
[169] Padilla, P. and Toxvaerd, S. Simulating shear flow. J. Chem. Phys., 104: 5956, 1996.Google Scholar
[170] Daivis, P. J. Dalton, B. A. and Morishita, T. Effect of kinetic and configurational thermostats on claculations of the first normal stress coefficient in nonequilibrium molecular dynamics simulations. Phys. Rev. E, 86: 056707, 2012.Google Scholar
[171] Petravic, J. Time dependence of phase variables in a steady shear flow algorithm. Phys. Rev. E, 71: 011202, 2005.Google Scholar
[172] Daivis, P. J. and Todd, B. D. Frequency dependent elongational viscosity by nonequilibrium molecular dynamics. Int. J. Thermophys., 19: 1063, 1998.Google Scholar
[173] Baranyai, A. and Evans, D. J. New algorithm for constrained molecular-dynamics simulation of liquid benzene and naphthalene. Molec. Phys., 70(1): 53, 1990.Google Scholar
[174] Bright, J. N. Evans, D. J. and Searles, D. J. New observations regarding deterministic, time-reversible thermostats and Gauss's principle of least constraint. J. Chem. Phys., 122: 194106, 2005.Google Scholar
[175] Sarman, S. Evans, D. J. and Baranyai, A. Extremum properties of the Gaussian thermostat. Physica A, 208: 191, 1994.Google Scholar
[176] Evans, D. J. Cohen, E. G. D. and Morriss, G. P. Viscosity of a simple fluid from its maximal Lyanpunov exponents. Phys. Rev. A, 42: 5990, 1990.Google Scholar
[177] Sarman, S. Evans, D. J. and Morriss, G. P. Conjugate pairing rule and thermal-transport coefficients. Phys. Rev. A, 45: 2233–2242, 1992.Google Scholar
[178] Ditolla, F. D. and Ronchetti, M. Applicability of Nosé isothermal reversible dynamics. Phys. Rev. E, 48: 1726, 1993.Google Scholar
[179] Holian, B. L. Voter, A. F. and Ravelo, R. Thermostatted molecular-dynamics – how to avoid the Toda demon hidden in Nosé-Hoover dynamics. Phys. Rev. E, 52: 2338, 1995.Google Scholar
[180] Toxvaerd, S. and Olsen, O. H. Canonical molecular-dynamics of molecules with internal degrees of freedom. Ber. Bunsenges. Phys. Chem., 93: 274, 1990.Google Scholar
[181] Martyna, G. J. Klein, M. L. and Tuckerman, M. E. Nosé-Hoover chains: The canonical ensemble via continuous dynamics. J. Chem. Phys., 97: 2635, 1992.Google Scholar
[182] Branka, A. C. Nosé-Hoover chain method for nonequilibrium molecular dynamics simulation. Phys. Rev. E, 61: 4769, 2000.Google Scholar
[183] Branka, A. C. Kowalik, M. and Wojciechowski, K. W. Generalization of the Nosé-Hoover approach. J. Chem. Phys., 119: 1929, 2003.Google Scholar
[184] Erpenbeck, J. J. Shear viscosity of the hard-sphere fluid via nonequilibrium moleculardynamics. Phys. Rev. Lett., 52: 1333, 1984.Google Scholar
[185] Evans, D. J. and Morriss, G. P. Shear thickening and turbulence in simple fluids. Phys. Rev. Lett., 56: 2172, 1986.Google Scholar
[186] Delhommelle, J. Petravic, J. and Evans, D. J. Reexamination of string phase and shear thickening in simple fluids. Phys. Rev. E, 68: 031201, 2003.Google Scholar
[187] Loose, W. and Hess, S. Rheology of dense model fluids via nonequilibrium molecular dynamics – shear thinning and ordering transition. Rheol. Acta, 28: 91, 1989.Google Scholar
[188] Evans, D. J. Cui, S. T. Hanley, H. J. M. and Straty, G. C. Conditions for the existence of a reentrant solid-phase in a sheared atomic fluid. Phys. Rev. A, 46: 6731, 1992.Google Scholar
[189] Delhommelle, J. Petravic, J. and Evans, D. J. On the effects of assuming flow profiles in nonequilibrium simulations. J. Chem. Phys., 119: 11005, 2003.Google Scholar
[190] Delhommelle, J. and Evans, D. J. Comparison of thermostatting mechanisms in NVT and NPT simulations of decane under shear. J. Chem. Phys., 115: 43, 2001.Google Scholar
[191] Kusnezov, D. Bulgac, A. and Bauer, W. Canonical ensembles from chaos. Ann. Phys., 204: 155, 1990.Google Scholar
[192] Braga, C. and Travis, K. P. Configurational constant pressure molecular dynamics. J. Chem. Phys., 124: 104102, 2006.Google Scholar
[193] Tuckerman, M. E. Mundy, C. J. Balasubramanian, S. and Klein, M. L. Modified nonequilibrium molecular dynamics for fluid flows with energy conservation. J. Chem. Phys., 106: 5615, 1997.Google Scholar
[194] Evans, D. J. and Morriss, G. P. Isothermal-isobaric molecular dynamics. Chem. Phys., 77: 63, 1983.Google Scholar
[195] Melchionna, S. Ciccotti, G. and Holian, B. L. Hoover NPT dynamics for systems varying in shape and size. Mol. Phys., 78: 533, 1993.Google Scholar
[196] Bernardi, S. Private communication.
[197] Daivis, P. J. Matin, M. L. and Todd, B. D. Nonlinear shear and elongational rheology of model polymer melts by non-equilibrium molecular dynamics. J. Non-Newtonian Fluid Mech., 111: 1, 2003.Google Scholar
[198] Frascoli, F. and Todd, B. D. Molecular dynamics simulation of planar elongational flow at constant pressure and constant temperature. J. Chem. Phys., 126: 044506, 2007.Google Scholar
[199] Perkins, T. T. Smith, D. E. Larson, R. G. and Chu, S. Stretching of a single tethered polymer in a uniform flow. Science, 268: 83, 1995.Google Scholar
[200] Dobson, M. Periodic boundary conditions for long-time nonequilibrium molecular dynamics simulations of incompressible flows. J. Chem. Phys., 141: 184103, 2014.Google Scholar
[201] Hunt, T. A. Periodic boundary conditions for the simulation of uniaxial extensional flow of arbitrary duration. Molec. Simul., 42: 347, 2016.Google Scholar
[202] Cifre, H. J. G., Hess, S. and Kröger, M. Linear viscoelastic behavior of unentangled polymer melts via non-equilibrium molecular dynamics. Macromol. Theory Simul., 13: 748, 2004.Google Scholar
[203] Barnes, H. A. Hutton, J. F. and Walters, K. An Introduction to Rheology. Elsevier, Amsterdam, 1989.
[204] Jain, A. Sasmal, C. Hartkamp, R. Todd, B. D. and Prakash, J. R. Brownian dynamics simulations of planar mixed flows of polymer solutions at finite concentrations. Chem. Eng. Sci., 121: 245, 2015.Google Scholar
[205] Adler, P. M. and Brenner, H. Spatially periodic suspensions of convex particles in linear shear flows. 1. Description and kinematics. Int. J. Multiphase Flow, 11: 361, 1985.Google Scholar
[206] Adler, P. M. Zuzovsky, M. and Brenner, H. Spatially periodic suspensions of convex particles in linear shear flows. Int. J. Multiphase Flow, 11: 387, 1985.Google Scholar
[207] Ge, J. Marcelli, G. Todd, B. D. and Sadus, R. J. Energy and pressure of fluids under shear at different state points. Phys. Rev. E, 64: 021201, 2001.Google Scholar
[208] Ge, J. Marcelli, G. Todd, B. D. and Sadus, R. J. Erratum: Energy and pressure of fluids under shear at different state points. Phys. Rev. E, 65: 069901(E), 2002.Google Scholar
[209] Ge, J. Todd, B. D. Wu, G. and Sadus, R. J. Scaling behaviour for the pressure and energy of shearing fluids. Phys. Rev. E, 67: 061201, 2003.Google Scholar
[210] Todd, B. D. Power-law exponents for the shear viscosity of non-Newtonian simple fluids. Phys. Rev. E, 72: 041204, 2005.Google Scholar
[211] Desgranges, C. and Delhommelle, J. Universal scaling law for energy and pressure in a shearing fluid. Phys. Rev. E, 79: 052201, 2009.Google Scholar
[212] Travis, K. P. Searles, D. J. and Evans, D. J. Strain rate dependent properties of a simple fluid. Mol. Phys., 95: 195, 1998.Google Scholar
[213] Ferrario, M. Ciccotti, G. Holian, B. L. and Ryckaert, J. P. Shear-rate dependence of the viscosity of the Lennard-Jones liquid at the triple point. Phys. Rev. A, 44: 6936, 1991.Google Scholar
[214] Daivis, P. J. Thermodynamic relationships for shearing linear viscoelastic fluids. J. Non-Newtonian Fluid Mech., 152: 120, 2008.Google Scholar
[215] Daivis, P. J. and Evans, D. J. Thermal conductivity of a shearing fluid. Phys. Rev. E, 48: 1058, 1993.Google Scholar
[216] Spiegel, M. R. Theory and Problems of Vector Analysis and an Introduction to Tensor Analysis. McGraw-Hill, Singapore, 1974.
[217] Daivis, P. J. Matin, M. L. and Todd, B. D. Nonlinear shear and elongational rheology of model polymer melts at low strain rates. J. Non-Newtonian Fluid Mech., 147: 35, 2007.Google Scholar
[218] Ge, J. Wu, G.-W. Todd, B. D. and Sadus, R. J. Equilibrium and nonequilibrium molecular dynamics methods for detemining solid-liquid phase coexistence at equilibrium. J. Chem. Phys., 119(21): 11017, 2003.Google Scholar
[219] Matin, M. L. Todd, B. D. and Daivis, P. J. Various aspects of non-equilibrium molecular dynamics simulation of polymer rheology. Swinburne University Internal Report, 2003.Google Scholar
[220] Green, H. S. The Molecular Theory of Fluids. North-Holland Interscience, New York, 1952.
[221] Pryde, J. A. The Liquid State. Hutchinson University Library, London, 1966.
[222] Hanley, H. J. M. and Evans, D. J. Equilibrium and non-equilibrium radial distribution functions in mixtures. Mol. Phys., 39: 1039, 1980.Google Scholar
[223] Hess, S. Shear-flow-induced distortion of the pair-correlation function. Phys. Rev. A, 22: 2844, 1980.Google Scholar
[224] Hess, S. Similarities and differences in the non-linear flow behavior of simple and molecular liquids. Physica A, 118: 79, 1983.Google Scholar
[225] Kalyuzhnyi, Y. V. Cui, S. T. Cummings, P. T. and Cochran, H. D. Distribution functions of a simple fluid under shear: Low shear rates. Phys. Rev. E, 60: 1716, 1999.Google Scholar
[226] Gan, H. H. and Eu, B. C. Theory of the nonequilibrium structure of dense simple fluids – effects of shearing. Phys. Rev. A, 45: 3670, 1992.Google Scholar
[227] Gan, H. H. and Eu, B. C. Theory of the nonequilibrium structure of dense simple fluids – effects of shearing. 2. High-shear-rate effects. Phys. Rev. A, 46: 6344, 1992.Google Scholar
[228] Ge, J. The State Point Dependence of Classical Fluids under Shear. PhD thesis, Swinburne University of Technology, 2004.
[229] Desgranges, C. and Delhommelle, J. Rheology of liquid fcc metals: Equilibrium and transient-time correlation-function nonequilibrium molecular dynamics simulations. Phys. Rev. B, 78: 184202, 2008.Google Scholar
[230] Desgranges, C. and Delhommelle, J. Shear viscosity of liquid copper at experimentally accessible shear rates: Application of the transient-time correlation function formalism. J. Chem. Phys., 128: 084506, 2008.Google Scholar
[231] Desgranges, C. and Delhommelle, J. Molecular simulation of transport in nanopores: Application of the transient-time correlation function formalism. Phys. Rev. E, 77: 027701, 2008.Google Scholar
[232] Desgranges, C. and Delhommelle, J. Estimating the conductivity of a nanoconfined liquid subjected to an experimentally accessible external field. Mol. Simul., 34: 177, 2008.Google Scholar
[233] Pan, G. and McCabe, C. Prediction of viscosity for molecular fluids at experimentally accessible shear rates using the transient time correlation function formalism. J. Chem. Phys., 125: 194527, 2006.Google Scholar
[234] Hartkamp, R. Bernardi, S. and Todd, B. D. Transient-time correlation function applied to mixed shear and elongational flows. J. Chem. Phys., 136: 064105, 2012.Google Scholar
[235] Evans, D. J. Homogeneous NEMD algorithm for thermal conductivity application of noncanonical linear response theory. Phys. Lett. A, 91: 457, 1982.Google Scholar
[236] Wood, W. W. Long-time tails of the Green – Kubo integrands for a binary mixture. J. Stat. Phys., 57: 675, 1989.Google Scholar
[237] Evans, D. J. and Hanley, H. J. M. Heat induced instability in a model liquid. Molec. Phys., 68: 97, 1989.Google Scholar
[238] Hansen, D. P. and Evans, D. J. A generalized heat flow algorithm. Mol. Phys., 81: 767, 1994.Google Scholar
[239] Evans, D. J. Thermal conductivity of the Lennard-Jones fluid. Phys. Rev. A, 34: 1449, 1986.Google Scholar
[240] Galamba, N. de Castro, C. A. N. and Ely, J. F. Equilibrium and nonequilibrium molecular dynamics simulations of the thermal conductivity of molten alkali halides. J. Chem. Phys., 126: 204511, 2007.Google Scholar
[241] Tyrrell, H. J. V. and Harris, K. R. Diffusion in Liquids. Elsevier, 1984.
[242] MacGowan, D. and Evans, D. J. Heat and matter transport in binary-liquid mixtures. Phys. Rev. A, 34: 2133, 1986.Google Scholar
[243] Sarman, S. Evans, D. J. and Cummings, P. T. Recent developments in non-Newtonian molecular dynamics. Phys. Rep., 305: 1, 1998.Google Scholar
[244] Sarman, S. and Evans, D. J. Heat flow and mass diffusion in binary Lennard-Jones mixtures. Phys. Rev. A, 45: 2370, 1992.Google Scholar
[245] Sarman, S. and Evans, D. J. Heat flow and mass diffusion in binary Lennard-Jones mixtures. II. Phys. Rev. A, 46: 1960, 1992.Google Scholar
[246] Maginn, E. J. Bell, A. T. and Theodorou, D. N. J. Phys. Chem., 97: 4173, 1993.
[247] Wheeler, D. R. and Newman, J. Molecular dynamics simulations of multicomponent diffusion. 2. Nonequilibrium method. J. Phys. Chem. B, 108: 18362, 2004.Google Scholar
[248] MacGowan, D. and Evans, D. J. A comparison of NEMD algorithms for thermal conductivity. Phys. Lett. A, 117: 414, 1986.Google Scholar
[249] MacGowan, D. and Evans, D. J. Addendum to heat and matter transport in binary-liquid mixtures. Phys. Rev. A, 36: 948, 1987.Google Scholar
[250] Evans, D. J. and Cummings, P. T. Non-equilibrium molecular dynamics algorithm for the calculation of thermal diffusion in simple fluid mixtures. Molec. Simul., 72: 893, 1991.Google Scholar
[251] Perronace, A. Simon, J.-M. Rousseau, B. and Ciccotti, G. Flux expression and NEMD perturbations for models of semi-flexible molecules. Molec. Phys., 99(13): 1139, 2001.Google Scholar
[252] Mandadapu, K. Jones, R. E. and Papadopoulos, P. A homogeneous nonequilibrium molecular dynamics method for calculating the heat transport coefficient of mixtures and alloys. J. Chem. Phys., 133: 034122, 2010.Google Scholar
[253] Perronace, A. Leppla, C. Leroy, F. Rousseau, B. and Wiegand, S. Soret and mass diffusion measurements and molecular dynamics simulations of n-pentane and n-decane mixtures. J. Chem. Phys., 116: 3718, 2002.Google Scholar
[254] Kirkwood, J. G. and Buff, F. P. The statistical mechanical theory of solutions. I. J. Chem. Phys., 19: 774, 1951.Google Scholar
[255] Miller, N. A. T., Daivis, P. J. Snook, I. K. and Todd, B. D. Computation of thermodynamic and tranport properties to predict thermophoretic effects in an argon-krypton mixture. J. Chem. Phys., 139: 144504, 2013.Google Scholar
[256] Hansen, J.-P. and McDonald, I. R. Theory of Simple Liquids. Academic Press, 3rd edition, 2006.
[257] Krüger, P. Bedeaux, D. Schnell, S. K. Kjelstrup, S. Vlugt, T. J. H. and Simon, J.-M. Kirkwood-buff integrals for finite volumes. J. Phys. Chem. Lett., 4: 235, 2013.Google Scholar
[258] Nichols, J. W. Moore, S. G. and Wheeler, D. R. Improved implementation of Kirkwood-Buff solution theory in periodic molecular simulations. Phys. Rev. E, 80: 051203, 2009.Google Scholar
[259] Hannam, S. D. W. Daivis, P. J. and Bryant, G. Dynamics of a model colloidal suspension from dilute to freezing. Submitted, 2016.Google Scholar
[260] Zhou, Y. and Miller, G. H. Green–Kubo formulas for mutual difusion coefficients in multicomponent systems. J. Phys. Chem., 100: 5516, 1996.Google Scholar
[261] Evans, D. J. and Murad, S. Thermal conductivity in molecular fluids. Molec. Phys., 68(6): 1219, 1989.Google Scholar
[262] Daivis, P. J. and Evans, D. J. Non-equilibrium molecular dynamics calculation of thermal conductivity of flexible molecules: butane. Mol. Phys., 81: 1289, 1994.Google Scholar
[263] Daivis, P. J. and Evans, D. J. Temperature dependence of the thermal conductivity for two models of liquid butane. Chem. Phys., 198: 25, 1995.Google Scholar
[264] Marechal, G. and Ryckaert, J. P. Atomic versus molecular description of transport properties in polyatomic fluids: n-butane as an illustration. Chem. Phys. Lett., 101: 548, 1983.Google Scholar
[265] Toxvaerd, S. Molecular dynamics calculation of the equation of state of alkanes. J. Chem. Phys., 93(6): 4290, 1990.Google Scholar
[266] Reith, D. Pütz, M. and Müller-Plathe, F. Deriving effective mesoscale potentials from atomistic simulations. J. Comput. Chem., 24: 1624, 2003.Google Scholar
[267] Shell, M. S. The relative entropy is fundamental to multiscale and inverse thermodynamic problems. J. Chem. Phys., 129: 144108, 2008.Google Scholar
[268] Potestio, R. Peter, C. and Kremer, K. Computer simulations of soft matter: Linking the scales. Entropy, 16: 4199, 2014.Google Scholar
[269] Raabe, G. and Sadus, R. J. Molecular dynamics simulation of the effect of bond flexibility on the transport properties of water. J. Chem. Phys., 137: 104512, 2012.Google Scholar
[270] Evans, D. J. and Murad, S. Singularity free algorithm for molecular dynamics simulation of rigid polyatomics. Molec. Phys., 34(2): 327, 1977.Google Scholar
[271] Hess, S. Rheological properties via nonequilibrium molecular dynamics: From simple towards polymeric liquids. J. Non-Newtonian Fluid Mech., 23: 305, 1987.Google Scholar
[272] Warner, H. R. Jr. Kinetic theory and rheology of dilute suspensions of finitely extendible dumbbells. Ind. Eng. Chem. Fundam., 11(3): 379, 1972.Google Scholar
[273] Grest, G. S. and Kremer, K. Molecular dynamics simulation for polymers in the presence of a heat bath. Phys. Rev. A, 33(5): 3628, 1986.Google Scholar
[274] Kremer, K. and Grest, G. S. Dynamics of entangled linear polymer melts – a moleculardynamics simulation. J. Chem. Phys., 92: 5057, 1990.Google Scholar
[275] Snook, I. Langevin and Generalised Langevin Approach to the Dynamics of Atomic, Polymeric and Colloidal Systems. Elsevier, Amsterdam, 2007.
[276] Johnson, J. K. Müller, E. A. and Gubbins, K. E. Equation of state for Lennard-Jones chains. J. Phys. Chem., 98: 6413, 1994.Google Scholar
[277] Ryckaert, J.-P. and Bellemans, A. Molecular dynamics of liquid n-butane near its boiling point. Chem. Phys. Lett., 30(1): 123, 1975.Google Scholar
[278] Ryckaert, J.-P. Ciccotti, G. and Berendsen, H. J. C. Numerical integration of the Cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. J. Comput. Phys., 23: 327, 1977.Google Scholar
[279] Andersen, H. C. Rattle: A “velocity” version of the shake algorithm for molecular dynamics calculations. J. Comput. Phys., 52: 24, 1983.Google Scholar
[280] Martyna, G. J. Tuckerman, M. E. Tobias, D. J. and Klein, M. L. Explicit reversible integrators for extended systems dynamics. Molec. Phys., 87(5): 1117, 1996.Google Scholar
[281] Balasubramanian, S. C. J. Mundy, and M. L. Klein. Shear viscosity of polar fluids: Molecular dynamics calculations of water. J. Chem. Phys., 105(24): 11190, 1996.
[282] Edberg, R. Evans, D. J. and Morriss, G. P. Constrained molecular dynamics: Simulations of liquid alkanes with a new algorithm. J. Chem. Phys., 84: 6933, 1986.Google Scholar
[283] Baranyai, A. and Evans, D. J. NEMD investigation of the rheology of oblate molecules: shear flow in liquid benzene. Molec. Phys., 71(4): 835, 1990.Google Scholar
[284] Ciccotti, G. Ferrario, M. and Ryckaert, J.-P. Molecular dynamics of rigid systems in cartesian coordinates: A general formulation. Molec. Phys., 47(6): 1253, 1982.Google Scholar
[285] Morriss, G. P. and Evans, D. J. A constraint algorithm for the computer simulation of complex molecular liquids. Comput. Phys. Commun., 62: 267, 1991.Google Scholar
[286] Olmsted, R. D. and Snider, R. F. Differences in fluid dynamics associated with an atomic versus a molecular description of the same system. J. Chem. Phys., 65: 3407, 1976.Google Scholar
[287] Yamakawa, H. Modern Theory of Polymer Solutions. Harper & Row, New York, 1971.
[288] Allen, M. P. Atomic and molecular representations of molecular hydrodynamic variables. Mol. Phys., 52: 705, 1984.Google Scholar
[289] Ciccotti, G. and Ryckaert, J. P. Molecular dynamics simulation of rigid molecules. Computer Physics Reports, 4: 345, 1986.Google Scholar
[290] Edberg, R. Evans, D. J. and Morriss, G. P. On the nonlinear Born effect. Mol. Phys., 62: 1357, 1987.Google Scholar
[291] Cui, S. T. Cummings, P. T. and Cochran, H. D. The calculation of the viscosity from the autocorrelation function using molecular and atomic stress tensors. Mol. Phys., 88: 1657, 1996.Google Scholar
[292] Evans, D. J. Non-equilibrium molecular dynamics study of the rheological properties of diatomic liquids. Mol. Phys., 42: 1355, 1981.Google Scholar
[293] Travis, K. P. Daivis, P. J. and Evans, D. J. Computer simulation algorithms for molecules undergoing planar Couette flow: A nonequilibrium molecular dynamics study. J. Chem. Phys., 103: 1109, 1995.Google Scholar
[294] Travis, K. P. Daivis, P. J. and Evans, D. J. Thermostats for molecular fluids undergoing shear flow: Application to liquid chlorine. J. Chem. Phys., 103: 10638, 1995.Google Scholar
[295] Travis, K. P. Daivis, P. J. and Evans, D. J. Erratum: Thermostats for molecular fluids undergoing shear flow: Application to liquid chlorine. J. Chem. Phys., 105: 3893, 1996.Google Scholar
[296] Baranyai, A. Evans, D. J. and Daivis, P. J. Isothermal shear-induced heat flow. Phys. Rev. A, 46: 7593, 1992.Google Scholar
[297] Edberg, R. Morriss, G. P. and Evans, D. J. Rheology of n-alkanes by nonequilibrium molecular dynamics. J. Chem. Phys., 86: 4555, 1987.Google Scholar
[298] Cummings, P. T. and Evans, D. J. Nonequilibrium molecular dynamics approaches to transport properties and non-newtonian fluid rheology. Ind. Eng. Chem. Res., 31: 1237, 1992.Google Scholar
[299] Reynolds, O. On the dilatancy of media composed of rigid particles in contact. With experimental illustrations. Phil. Mag., 20(127): 469, 1885.Google Scholar
[300] Tildesley, D. J. and Madden, P. A. Time correlation functions for a model of liquid carbon disulphide. Molec. Phys., 48(1): 129, 1983.Google Scholar
[301] Prathiraja, P. Daivis, P. J. and Snook, I. K. A molecular simulation study of shear viscosity and thermal conductivity of liquid carbon disulphide. J. Mol. Liq., 154: 6, 2010.Google Scholar
[302] Matin, M. L. Daivis, P. J. and Todd, B. D. Comparison of planar Couette flow and planar elongational flow for systems of small freely jointed chain molecules. J. Chem. Phys., 113: 9122, 2000.Google Scholar
[303] Matin, M. L. Daivis, P. J. and Todd, B. D. Erratum: “Comparison of planar Couette flow and planar elongational flow for systems of small freely jointed chain molecules” [J. Chem. Phys. 113, 9122 (2000)]. J. Chem. Phys., 115: 5338, 2001.Google Scholar
[304] Matin, M. L. Daivis, P. J. and Todd, B. D. Cell neighbour list method for planar elongational flow: rheology of a diatomic fluid. Comput. Phys. Commun., 151: 35, 2003.Google Scholar
[305] Müller-Plathe, F. Coarse-graining in polymer simulation: From the atomic to the mesoscopic scale and back. ChemPhysChem, 3: 754, 2002.Google Scholar
[306] Padding, J. T. and Briels, W. J. Coarse-grained molecular dynamics simulations of polymer melts in transient and steady shear flow. J. Chem. Phys., 118: 10276, 2003.Google Scholar
[307] Kröger, M. Loose, W. and Hess, S. Rheology and structural changes of polymer melts via nonequilibrium molecular dynamics. J. Rheol., 37: 1057, 1993.Google Scholar
[308] Ferry, J. D. Viscoelastic Properties of Polymers. Wiley, New York, 1980.
[309] Kröger, M. and Hess, S. Rheological evidence for a dynamical crossover in polymer melts via nonequilibrium molecular dynamics. Phys. Rev. Lett., 85: 1128, 2000.Google Scholar
[310] Bosko, J. T. Todd, B. D. and Sadus, R. J. Viscoelastic properties of dendrimers in the melt by nonequilibrium molecular dynamics. J. Chem. Phys., 121: 12050, 2004.Google Scholar
[311] Hunt, T. A. and Todd, B. D. A comparison of model linear chain molecules with constrained and flexible bond lengths under planar Couette and extensional flows. Mol. Simul., 35: 1153, 2009.Google Scholar
[312] Prud'homme, R. K. and Bird, R. B. The dilational properties of suspensions of gas bubbles in incompressible Newtonian and non-Newtonian fluids. J. Non-Newtonian Fluid Mech., 3: 261, 1977/1978.Google Scholar
[313] Sarman, S. Daivis, P. J. and Evans, D. J. Self-diffusion of rodlike molecules in strong shear fields. J. Chem. Phys., 47: 1784, 1993.Google Scholar
[314] Hunt, T. A. Diffusion of linear polymer melts in shear and extensional flows. J. Chem. Phys., 131: 054904, 2009.Google Scholar
[315] Stokes, G. G. Mathematical and Physical Papers. Volume 1. Oxford Press, Oxford, 1880.
[316] Clarke, C. and Carswell, R. Principles of Astrophysical Fluid Dynamics. Cambridge University Press, Cambridge, 1995.
[317] Rubbert, G. and Saaris, G. A general three-dimensional potential-flow method applied to V/STOL aerodynamics. SAE, 680304: 945, 1968.Google Scholar
[318] Tabeling, P. Introduction to Microfluidics. Oxford University Press, New York, 2005.
[319] Bruus, H. Theoretical Microfluidics. Oxford University Press, New York, 2008.
[320] Travis, K. P. and Gubbins, K. E. Poiseuille flow of Lennard-Jones fluids in narrow slit pores. J. Chem. Phys., 112: 1984, 2000.Google Scholar
[321] Alley, W. E. and Alder, B. J. Generalised transport coefficients for hard spheres. Phys. Rev. A, 27: 3158, 1983.Google Scholar
[322] Todd, B. D. Hansen, J. S. and Daivis, P. J. Non-local shear stress for homogeneous fluids. Phys. Rev. Lett., 100: 195901, 2008.Google Scholar
[323] Hess, S. Viscoelasticity of a simple liquid in the pre-freezing regime. Phys. Lett. A, 90: 293, 1982.Google Scholar
[324] Hansen, J. S. Daivis, P. J. Travis, K. P. and Todd, B. D. Parameterisation of the nonlocal viscosity kernel for an atomic fluid. Phys. Rev. E, 76: 041121, 2007.Google Scholar
[325] Bertolini, D. and Tani, A. Generalized hydrodynamics and the acoustic modes of water – theory and simulation results. Phys. Rev. E, 51: 1091, 1995.Google Scholar
[326] Bertolini, D. and Tani, A. Stress tensor and viscosity of water – molecular-dynamics and generalized hydrodynamics results. Phys. Rev. E, 52: 1699, 1995.Google Scholar
[327] Puscasu, R. M. Todd, B. D. Daivis, P. J. and Hansen, J. S. Viscosity kernel of molecular fluids: butane and polymer melts. Phys. Rev. E, 82: 011801, 2010.Google Scholar
[328] Puscasu, R. M. Todd, B. D. Daivis, P. J. and Hansen, J. S. Non-local viscosity of polymer melts approaching their glassy state. J. Chem. Phys., 133: 144907, 2010.Google Scholar
[329] Travis, K. P. Searles, D. J. and Evans, D. J. On the wavevector dependent shear viscosity of a simple fluid. Mol. Phys., 97: 415, 1999.Google Scholar
[330] Todd, B. D. and Evans, D. J. Temperature profile for Poiseuille flow. Phys. Rev. E, 55: 2800, 1997.Google Scholar
[331] Daivis, P. J. and Coelho, J. L. K. Generalized Fourier law for heat flow in a fluid with a strong, nonuniform strain rate. Phys. Rev. E, 61: 6003, 2000.Google Scholar
[332] Cordero, P. and Risso, D. Nonlinear transport laws for low density fluids. Physica A, 257: 36, 1998.Google Scholar
[333] Criado-Sancho, M. Jou, D. and Casas-Vazquez, J. Nonequilibrium kinetic temperatures in flowing gases. Phys. Lett. A, 350: 339, 2006.Google Scholar
[334] Casas-Vázquez, and Jou, D. Nonequilibrium temperature versus local-equilibrium temperature. Phys. Rev. E, 49: 1040, 1994.Google Scholar
[335] Han, M. and Lee, J. S. Method for calculating the heat and momentum fluxes of inhomogeneous fluids. Phys. Rev. E, 70: 061205, 2004.Google Scholar
[336] Ayton, G. Jepps, O.G. and Evans, D. J. On the validity of Fourier's law in systems with spatially varying strain rates. Mol. Phys., 96: 915, 1999.Google Scholar
[337] Todd, B. D. and Evans, D. J. The heat flux vector for highly inhomogeneous nonequilibrium fluids in very narrow pores. J. Chem. Phys., 103: 9804, 1995.Google Scholar
[338] Hoang, H. and Galliero, G. Shear viscosity of inhomogeneous fluids. J. Chem. Phys., 136: 124902, 2012.Google Scholar
[339] Dalton, B. A. Glavatskiy, K. S. Daivis, P. J. Todd, B. D. and Snook, I. K. Linear and nonlinear density response functions for a simple atomic fluid. J. Chem. Phys., 139: 044510, 2013.Google Scholar
[340] Dalton, B. A. Daivis, P. J. Hansen, J. S. and Todd, B. D. Effects of nanoscale inhomogeneity on shearing fluids. Phys. Rev. E, 88: 052143, 2013.Google Scholar
[341] Glavatskiy, K. S. Dalton, B. A. Daivis, P. J. and Todd, B. D. Nonlocal response functions for predicting shear flow of strongly inhomogeneous fluids. I. Sinusoidally driven shear and sinusoidally driven inhomogeneity. Phys. Rev. E, 91: 062132, 2015.Google Scholar
[342] Dalton, B. A. Glavatskiy, K. S. Daivis, P. J. and Todd, B. D. Nonlocal response functions for predicting shear flow of strongly inhomogeneous fluids. II. Sinusoidally driven shear and multisinusoidal inhomogeneity. Phys. Rev. E, 92: 012108, 2015.Google Scholar
[343] Hoang, H. and Galliero, G. Local viscosity of a fluid confined in a narrow pore. Phys. Rev. E, 86: 021202, 2012.Google Scholar
[344] Hoang, H. and Galliero, G. Local shear viscosity of strongly inhomogeneous dense fluids: from the hard-sphere to the Lennard-Jones fluids. J. Phys.: Condens. Matter, 25: 485001, 2013.Google Scholar
[345] Todd, B. D. and Hansen, J. S. Nonlocal viscous transport and the effect on fluid stress. Phys. Rev. E, 78: 051202, 2008.Google Scholar
[346] Todd, B. D. Evans, D. J. Travis, K. P. and Daivis, P. J. Comment on: Molecular simulation and continuum mechanics study of simple fluids in non-isothermal planar Couette flows. J. Chem. Phys., 111: 10730, 1999.Google Scholar
[347] Bernardi, S. Todd, B. D. and Searles, D. J. Thermostatting highly confined fluids. J. Chem. Phys., 132: 244706, 2010.Google Scholar
[348] De Luca, S. Todd, B. D. Hansen, J. S. and Daivis, P. J. A new and effective method for thermostatting confined fluids. J. Chem. Phys. 140: 054502, 2014.Google Scholar
[349] Travis, K. P. and Evans, D. J. Molecular spin in a fluid undergoing Poiseuille flow. Phys. Rev. E, 55: 1566, 1997.Google Scholar
[350] Couette code was developed byBernardi, S. based on the MD library of Hansen, J. S. (http://www.jshansen.dk/resources.html).
[351] Eringen, A. C. Contributions to Mechanics. Pergamon, Oxford, 1969.
[352] Travis, K. P. Todd, B. D. and Evans, D. J. Poiseuille flow of molecular fluids. Physica A, 240: 315, 1997.Google Scholar
[353] Sarman, S. and Evans, D. J. Statistical mechanics of viscous flow in nematic fluids. J. Chem. Phys., 99: 9021, 1993.Google Scholar
[354] Kröger, M. Models for Polymeric and Anisotropic Liquids, volume 675 of Lecture Notes in Physics. Springer, New York, 2005.
[355] Zhang, J. Hansen, J. S. Todd, B. D. and Daivis, P. J. Structural and dynamical properties for confined polymers undergoing planar Poiseuille flow. J. Chem. Phys., 126: 144907, 2007.Google Scholar
[356] Doi, M. Introduction to Polymer Physics. Oxford, New York, 1996.
[357] Münstedt, H. Schmidt, M., and Wassner, E. Stick and slip phenomena during extrusion of polyethylene melts as investigated by laser-doppler velocimetry. J. Rheol., 44: 413, 2000.Google Scholar
[358] Robert, L. Demay, Y. and Vergnes, B. Stick-slip flow of high density polyethylene in a transparent slit die investigated by laser doppler velocimetry. Rheol. Acta, 43: 89, 2004.Google Scholar
[359] Hansen, J. S. Daivis, P. J. and Todd, B. D. Viscous properties of isotropic fluids composed of linear molecules: Departure from the classical Navier-Stokes theory in nano-confined geometries. Phys. Rev. E, 80: 046322, 2009.Google Scholar
[360] Hansen, J. S. Bruus, H. Todd, B. D. and Daivis, P. J. Rotational and spin viscosities of water: Application to nanofluidics. J. Chem. Phys., 133: 144906, 2010.Google Scholar
[361] Hansen, J. S. Todd, B. D. and Daivis, P. J. Dynamical properties of a confined diatomic fluid undergoing zero mean oscillatory flow: Effect of molecular rotation. Phys. Rev. E, 77: 066707, 2008.Google Scholar
[362] Hansen, J. S. Daivis, P. J. and Todd, B. D. Molecular spin in nano-confined fluidic flows. Microfluid. Nanfluid., 6: 785, 2009.Google Scholar
[363] Hansen, J. S. Dyre, J. C. Daivis, P. J. Todd, B. D. and Bruus, H. Nanoflow hydrodynamics. Phys. Rev. E, 84: 036311, 2011.Google Scholar
[364] Bonthuis, D. L. Horinek, D. Bocquet, L. and Netz, R. R. Electrohydraulic power conversion in planar nanochannels. Phys. Rev. Lett., 103: 144503, 2009.Google Scholar
[365] Bonthuis, D. L. Horinek, D. Bocquet, L. and Netz, R. R. Electrokinetics at aqueous interfaces without mobile charges. Langmuir, 26: 12614, 2010.Google Scholar
[366] De Luca, S. Todd, B. D. Hansen, J. S. and Daivis, P. J. Electropumping of water with rotating electric fields. J. Chem. Phys., 138: 154712, 2013.Google Scholar
[367] De Luca, S. Todd, B. D. Hansen, J. S. and Daivis, P. J. Molecular dynamics study of nanoconfined water flow driven by rotating electric fields under realistic experimental conditions. Langmuir, 30: 3095, 2014.Google Scholar
[368] Menzel, A. In preparation, 2016.
[369] Akcasu, A. Z. and Daniels, E. Fluctuation analysis in simple fluids. Phys. Rev. A, 2: 962, 1970.Google Scholar
[370] Ailawadi, N. K. Berne, B. J. and Forster, D. Hydrodynamics and collective angularmomentum fluctuations in molecular fluids. Phys. Rev. A, 3: 1462, 1971.Google Scholar
[371] Boon, J. P. and Yip, S. Molecular Hydrodynamics. McGraw-Hill, New York, 1980.
[372] Eu, B. C. Generalised Thermodynamics: The Thermodynamics of Irreversible Processes and Generalised Hydrodynamics. Kluwer, Dordrecht, 2002.
[373] Holian, B. L. Hoover, W. G. Moran, B. and Straub, G. K. Shock-wave structure via nonequilibrium molecular dynamics and Navier-Stokes continuum mechanics. Phys. Rev. A, 22: 2798, 1980.Google Scholar
[374] Holian, B. L. and Lomdahl, P. S. Plasticity induced by shock waves in nonequilibrium molecular-dynamics simulations. Science, 280: 2085, 1998.Google Scholar
[375] Reed, E. J. Fried, L. E. Henshaw, W. D. and Tarver, C. M. Analysis of simulation technique for steady shock waves in materials with analytical equations of state. Phys. Rev. E, 74: 056706, 2006.Google Scholar
[376] Jou, D. Casas-Vazquez, J. and Lebon, G. Extended Irreversible Thermodynamics. Springer, Heidelberg, 2001.
[377] Dhont, J. K. G. A constitutive relation describing the shear-banding transition. Phys. Rev. E, 60: 4534, 1999.Google Scholar
[378] Masselon, C. Salmon, J.-B. and Colin, A. Nonlocal effects in flows of wormlike micellar solutions. Phys. Rev. Lett., 100: 038301, 2008.Google Scholar
[379] Schiek, R. L. and Shaqfeh, E. S. G. A nonlocal theory for stress in bound, Brownian suspensions of slender, rigid fibers. J. Fluid. Mech., 296: 271, 1995.Google Scholar
[380] Goyon, J. Colin, A. Ovarlez, G. Ajdari, A. and Bocquet, L. Spatial cooperativity in soft glassy flows. Nature, 454: 84, 2008.Google Scholar
[381] Akhmatskaya, E. Todd, B. D. Daivis, P. J. Evans, D. J. Gubbins, K. E. and Pozhar, L. A. A study of viscosity inhomogeneity in porous media. J. Chem. Phys., 106: 4684, 1997.Google Scholar
[382] Travis, K. P. Personal communication.
[383] Palmer, B. J. Transverse-current autocorrelation-function calculations of the shear viscosity for molecular liquids. Phys. Rev. E, 49: 359, 1994.Google Scholar
[384] Smith, B. Hansen, J. S. and Todd, B. D. Nonlocal viscosity kernel of mixtures. Phys. Rev. E, 85: 022201, 2012.Google Scholar
[385] Lado, F. Numerical Fourier transforms in one, two, and three dimensions for liquid state calculations. J. Comput. Phys., 8: 417, 1971.Google Scholar
[386] Puscasu, R. M. Todd, B. D. Daivis, P. J. and Hansen, J. S. An extended analysis of the viscosity kernel for monatomic and diatomic fluids. J. Phys: Condens. Matter, 22: 195105, 2010.Google Scholar
[387] Cadusch, P. J. Todd, B. D. Zhang, J. and Daivis, P. J. A non-local hydrodynamic model for the shear viscosity of confined fluids: analysis of a homogeneous kernel. J. Phys. A: Math. Theor., 41: 035501, 2008.Google Scholar
[388] Glavatskiy, K. S. Dalton, B. A. Daivis, P. J. and Todd, B. D. Non-local viscosity. In preparation.
[389] Dalton, B. A. Glavatskiy, K. S. Daivis, P. J. and Todd, B. D. Non-local density dependent constitutive relations. In preparation.
[390] Dalton, B. A. The effects of density inhomogeneity and non-locality on nanofluidic flow. PhD thesis, RMIT University, 2014.
[391] Bitsanis, I. Magda, J. J. Tirrell, M. and Davis, H. T. Molecular dynamics of flow in micropores. J. Chem. Phys., 87: 1733, 1987.Google Scholar
[392] Bitsanis, I. Vanderlick, T. K. Tirrell, M. and Davis, H. T. A tractable molecular theory of flow in strongly inhomogeneous fluids. J. Chem. Phys., 89: 3152, 1988.Google Scholar
[393] M, C. L. Navier, H. Memoire sur les lois du mouvement des fluides. Mem. Acad. Sci. Inst. Fr., 6: 389, 1823.Google Scholar
[394] Bocquet, L. and Barrat, J.-L. Hydrodynamic boundary-conditions, correlation-functions, and Kubo relations for confined fluids. Phys. Rev. E, 49: 3079, 1994.Google Scholar
[395] Petravic, J. and Harrowell, P. On the equilibrium calculation of the friction coefficient for liquid slip against a wall. J. Chem. Phys., 127: 174706, 2007.Google Scholar
[396] Petravic, J. and Harrowell, P. On the equilibrium calculation of the friction coefficient for liquid slip against a wall. J. Chem. Phys., 128: 209901, 2008.Google Scholar
[397] Bhatia, S. K. and Nicholson, D. Modeling mixture transport at the nanoscale: Departure from existing paradigms. Phys. Rev. Lett., 100: 236103, 2008.Google Scholar
[398] Koplik, J. Banavar, J. and Willemsen, J. Molecular-dynamics of fluid-flow at solid-surfaces. Phys. Fluids A, 1: 781, 1989.Google Scholar
[399] Brochard, F. and de Gennes, P. G. Shear-dependent slippage at a polymer solid interface. Langmuir, 8: 3033, 1992.Google Scholar
[400] Guo, Z. Zhao, T. S. and Shi, Y. Simple kinetic model for fluid flows in the nanometer scale. Phys. Rev. E, 71: 035301, 2005.Google Scholar
[401] Vinogradova, O. I. Drainage of a thin liquid-film confined between hydrophobic surfaces. Langmuir, 11: 2213, 1995.Google Scholar
[402] Mundy, C. J. Balasubramanian, S. and Klein, M. L. Hydrodynamic boundary conditions for confined fluids via a nonequilibrium molecular dynamics simulation. J. Chem. Phys., 105: 3211, 1996.Google Scholar
[403] Heidenreich, S. Ilg, P. and Hess, S. Boundary conditions for fluids with internal orientational degrees of freedom: Apparent velocity slip associated with the molecular alignment. Phys. Rev. E, 75: 066302, 2007.Google Scholar
[404] Sokhan, V. P. and Quirke, N. Slip coefficient in nanoscale pore flow. Phys. Rev. E, 78: 015301, 2008.Google Scholar
[405] Denniston, C. and Robbins, M. O. General continuum boundary conditions for miscible binary fluids from molecular dynamics simulations. J. Chem. Phys., 125: 214102, 2006.Google Scholar
[406] Cieplak, M. Koplik, J. and Banavar, J. Boundary conditions at a fluid-solid interface. Phys. Rev. Lett., 86: 803, 2001.Google Scholar
[407] Huang, K. and Szlufarska, I. Green–Kubo relation for friction at liquid-solid surfaces. Phys. Rev. E, 89: 032118, 2014.Google Scholar
[408] Hansen, J. S. Todd, B. D. and Daivis, P. J. Prediction of fluid velocity slip at solid surfaces. Phys. Rev. E, 84: 016313, 2011.Google Scholar
[409] Kannam, S. K. Todd, B. D. Hansen, J. S. and Daivis, P. J. Slip flow in graphene nanochannels. J. Chem. Phys., 135: 144701, 2011.Google Scholar
[410] Kannam, S. K. Todd, B. D. Hansen, J. S. and Daivis, P. J. Slip length of water on graphene: Limitations of non-equilibrium molecular dynamics simulations. J. Chem. Phys., 136: 024705, 2012.Google Scholar
[411] Kannam, S. K. Todd, B. D. Hansen, J. S. and Daivis, P. J. Interfacial slip friction at a fluidsolid cylindrical boundary. J. Chem. Phys., 136: 244704, 2012.Google Scholar
[412] Kannam, S. K. Todd, B. D. Hansen, J. S. and Daivis, P. J. How fast does water flow in carbon nanotubes? J. Chem. Phys., 138: 094701, 2013.Google Scholar
[413] Hansen, J. S. Daivis, P. J. Dyre, J. Todd, B. D. and Bruus, H. Generalized extended Navier-Stokes theory. J. Chem. Phys. 138: 034503, 2013.Google Scholar
[414] Hansen, J. S. Generalized extended Navier-Stokes theory: Multiscale spin relaxation in molecular fluids. Phys. Rev. E. 88: 032101, 2013.Google Scholar
[415] Hansen, J. S. Dyer, J. C. Daivis, P. J. Todd, B. D. and Bruus, H. Continuum nanofluidics. Langmuir 31:13275, 2015.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bibliography
  • Billy D. Todd, Swinburne University of Technology, Victoria, Peter J. Daivis, Royal Melbourne Institute of Technology
  • Book: Nonequilibrium Molecular Dynamics
  • Online publication: 30 March 2017
  • Chapter DOI: https://doi.org/10.1017/9781139017848.013
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bibliography
  • Billy D. Todd, Swinburne University of Technology, Victoria, Peter J. Daivis, Royal Melbourne Institute of Technology
  • Book: Nonequilibrium Molecular Dynamics
  • Online publication: 30 March 2017
  • Chapter DOI: https://doi.org/10.1017/9781139017848.013
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bibliography
  • Billy D. Todd, Swinburne University of Technology, Victoria, Peter J. Daivis, Royal Melbourne Institute of Technology
  • Book: Nonequilibrium Molecular Dynamics
  • Online publication: 30 March 2017
  • Chapter DOI: https://doi.org/10.1017/9781139017848.013
Available formats
×