Book contents
- Frontmatter
- Contents
- List of contributors
- Preface
- Lectures on anabelian phenomena in geometry and arithmetic
- On Galois rigidity of fundamental groups of algebraic curves
- Around the Grothendieck anabelian section conjecture
- From the classical to the noncommutative Iwasawa theory (for totally real number fields)
- On the MH(G)-conjecture
- Galois theory and Diophantine geometry
- Potential modularity – a survey
- Remarks on some locally ℚp-analytic representations of GL2(F) in the crystalline case
- Completed cohomology – a survey
- Tensor and homotopy criteria for functional equations of ℓ-adic and classical iterated integrals
- References
Potential modularity – a survey
Published online by Cambridge University Press: 05 January 2012
- Frontmatter
- Contents
- List of contributors
- Preface
- Lectures on anabelian phenomena in geometry and arithmetic
- On Galois rigidity of fundamental groups of algebraic curves
- Around the Grothendieck anabelian section conjecture
- From the classical to the noncommutative Iwasawa theory (for totally real number fields)
- On the MH(G)-conjecture
- Galois theory and Diophantine geometry
- Potential modularity – a survey
- Remarks on some locally ℚp-analytic representations of GL2(F) in the crystalline case
- Completed cohomology – a survey
- Tensor and homotopy criteria for functional equations of ℓ-adic and classical iterated integrals
- References
Summary
Introduction
Our main goal in this article is to talk about recent theorems of Taylor and his co-workers on modularity and potential modularity of Galois representations, particularly those attached to elliptic curves. However, so as to not bog down the exposition unnecessarily with technical definitions right from the off, we will build up to these results by starting our story with Wiles' breakthrough paper [Wil95], and working towards the more recent results. We will however assume some familiarity with the general area – for example we will assume the reader is familiar with the notion of an elliptic curve over a number field, and a Galois representation, and what it means for such things to be modular (when such a notion makes sense). Let us stress now that, because of this chronological approach, some theorems stated in this paper will be superseded by others (for example Theorem 1 gets superseded by Theorem 6 which gets superseded by Theorem 7), and similarly some conjectures (for example Serre's conjecture) will become theorems as the story progresses. The author hopes that this slightly non-standard style nevertheless gives the reader the feeling of seeing how the theory evolved.
We thank Toby Gee for reading through a preliminary draft of this article and making several helpful comments, and we also thank Matthew Emerton and Jan Nekovář for pointing out various other inaccuracies and ambiguities.
Semistable elliptic curves over Q are modular
The story, of course, starts with the following well-known result proved in [Wil95] and [TW95].
- Type
- Chapter
- Information
- Non-abelian Fundamental Groups and Iwasawa Theory , pp. 188 - 211Publisher: Cambridge University PressPrint publication year: 2011