Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-09T14:36:41.194Z Has data issue: false hasContentIssue false

Galois theory and Diophantine geometry

Published online by Cambridge University Press:  05 January 2012

Minhyong Kim
Affiliation:
University College London
John Coates
Affiliation:
University of Cambridge
Minhyong Kim
Affiliation:
University College London
Florian Pop
Affiliation:
University of Pennsylvania
Mohamed Saïdi
Affiliation:
University of Exeter
Peter Schneider
Affiliation:
Universität Münster
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Beilinson, A.; Deligne, P.Interpretation motivique de la conjecture de Zagier reliant polylogarithmes et régulateurs. Motives (Seattle, WA, 1991), 97–121, Proc. Sympos. Pure Math., 55, Part 2, Amer. Math. Soc., Providence, RI, 1994.Google Scholar
[2] Bloch, Spencer; Kato, Kazuya. L-functions and Tamagawa numbers of motives. The Grothendieck Festschrift, Vol. I, 333–400, Progr. Math., 86, Birkhauser Boston, Boston, MA, 1990.Google Scholar
[3] Balakrishnan, Jennifer S.; Kedlaya, Kiran S.; Kim, Minhyong Appendix and erratum: ‘Massey products for elliptic curves of rank 1.’; Jour. Amer. Math. Soc. (to be published).
[4] Coates, John; Kim, Minhyong. Selmer varieties for curves with CM Jacobians. To be published, Kyoto Mathematical Journal. Available at the mathematics archive, arXiv:0810.3354.
[5] Coates, John; Fukaya, Takako; Kato, Kazuya; Sujatha, Ramdorai; Venjakob, Otmar. The GL2 main conjecture for elliptic curves without complex multiplication. Publ. Math. Inst. Hautes Études Sci. No. 101 (2005), 163–208.CrossRefGoogle Scholar
[6] Coates, J.; Wiles, A.On the conjecture of Birch and Swinnerton-Dyer. Invent. Math. 39 (1977), no. 3, 223–251.CrossRefGoogle Scholar
[7] Coleman, Robert F.Effective Chabauty. Duke Math. J. 52 (1985), no. 3, 765–770.CrossRefGoogle Scholar
[8] Deligne, Pierre. Le groupe fondamental de la droite projective moins trois points. Galois groups over ℚ (Berkeley, CA, 1987), 79–297, Math. Sci. Res. Inst. Publ., 16, Springer, New York, 1989.Google Scholar
[9] Faltings, G.Endlichkeitssätze für abelsche Varietäten über Zahlkörpern. Invent. Math. 73 (1983), no. 3, 349–366.CrossRefGoogle Scholar
[10] Fontaine, Jean-Marc. Sur certains types de représentations p-adiques du groupe de Galois d'un corps local; construction d'un anneau de Barsotti-Tate. Ann. of Math. (2) 115 (1982), no. 3, 529–577.CrossRefGoogle Scholar
[11] Fontaine, Jean-Marc; Mazur, Barry. Geometric Galois representations. Elliptic curves, modular forms, & Fermat's last theorem (Hong Kong, 1993), 41–78, Ser. Number Theory, I, Int. Press, Cambridge, MA, 1995.Google Scholar
[12] Furusho, Hidekazu. p-adic multiple zeta values. I. p-adic multiple polylogarithms and the p-adic KZ equation. Invent. Math. 155 (2004), no. 2, 253–286.CrossRefGoogle Scholar
[13] Goldman, William M.; Millson, John J.The deformation theory of representations of fundamental groups of compact Kähler manifolds. Inst. Hautes Études Sci. Publ. Math. No. 67 (1988), 43–96.CrossRefGoogle Scholar
[14] Greenberg, Ralph. The Iwasawa invariants of Γ-extensions of a fixed number field. Amer. J. Math. 95 (1973), 204–214.CrossRefGoogle Scholar
[15] Greenberg, Ralph. On the structure of certain Galois groups. Invent. Math. 47 (1978), no. 1, 85–99.CrossRefGoogle Scholar
[16] Grothendieck, Alexander. Brief, an G., Faltings. London Math. Soc. Lecture Note Ser., 242, Geometric Galois actions, 1, 49–58, Cambridge University Press, Cambridge, 1997.Google Scholar
[17] Hain, Richard M.The de Rham homotopy theory of complex algebraic varieties. I. K-Theory 1 (1987), no. 3, 271–324.CrossRefGoogle Scholar
[18] Iyanaga, Shokichi. Memories of Professor Teiji Takagi [1875–1960]. Class field theory–its centenary and prospect (Tokyo, 1998), 1–11, Adv. Stud. Pure Math., 30, Math. Soc. Japan, Tokyo, 2001.Google Scholar
[19] Motives. Proceedings of the AMS-IMS-SIAM Joint Summer Research Conference held at the University of Washington, Seattle, Washington, July 20–August 2, 1991. Edited by Uwe Jannsen, Steven Kleiman and Jean-Pierre Serre. Proceedings of Symposia in Pure Mathematics, 55, Part 1. American Mathematical Society, Providence, RI, 1994. xiv+747 pp. ISBN: 0-8218-1636-5
[20] Kato, Kazuya. p-adic Hodge theory and values of zeta functions of modular forms. Cohomologies p-adiques et applications arithmétiques. III. Astérisque No. 295 (2004), ix, 117–290.Google Scholar
[21] Kato, Kazuya. Lectures on the approach to Iwasawa theory for Hasse-Weil L-functions via BdR. I. Arithmetic algebraic geometry (Trento, 1991), 50–163, Lecture Notes in Math., 1553, Springer, Berlin, 1993.CrossRefGoogle Scholar
[22] Kim, Minhyong. The motivic fundamental group of ℙ1 \{0, 1, ∞} and the theorem of Siegel. Invent. Math. 161 (2005), no. 3, 629–656.CrossRefGoogle Scholar
[23] Kim, Minhyong. The unipotent Albanese map and Selmer varieties for curves. Publ. Res. Inst. Math. Sci. 45 (2009), no. 1, 89–133. (Proceedings of special semester on arithmetic geometry, Fall, 2006.)CrossRefGoogle Scholar
[24] Kim, Minhyong. Remark on fundamental groups and effective Diophantine methods for hyperbolic curves. To be published in Serge Lang memorial volume. Available at mathematics archive, arXiv:0708.1115.
[25] Kim, Minhyong. p-adic L-functions and Selmer varieties associated to elliptic curves with complex multiplication. Annals of Mathematics, 172 (2010), no. 1, 751–759.CrossRefGoogle Scholar
[26] Kim, Minhyong. Massey products for elliptic curves of rank 1. Jour. Amer. Math. Soc. 23 (2010), no. 3, 725–748.CrossRefGoogle Scholar
[27] Kim, Minhyong, and Tamagawa, Akio. The l-component of the unipotent Albanese map. Math. Ann. 340 (2008), no. 1, 223–235.CrossRefGoogle Scholar
[28] Kolyvagin, Victor A.On the Mordell–Weil group and the Shafarevich–Tate group of modular elliptic curves. Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990), 429–436, Math. Soc.Japan, Tokyo, 1991.Google Scholar
[29] Mumford, David; Fogarty, John. Geometric invariant theory. Second edition. Ergebnisse der Mathematik und ihrer Grenzgebiete, 34. Springer-Verlag, Berlin, 1982. xii+220 pp.Google Scholar
[30] Milne, J. S.Arithmetic duality theorems. Perspectives in Mathematics, 1. Academic Press, Inc., Boston, MA, 1986.Google Scholar
[31] Nakamura, Hiroaki; Tamagawa, Akio; Mochizuki, Shinichi. The Grothendieck conjecture on the fundamental groups of algebraic curves [translation of Su-gaku 50 (1998), no. 2, 113–129; MR1648427 (2000e:14038)]. Sugaku Expositions. Sugaku Expositions 14 (2001), no. 1, 31–53.
[32] Narasimhan, M. S.; Seshadri, C. S.Stable and unitary vector bundles on a compact Riemann surface. Ann. of Math. (2) 82 1965 540–567.CrossRefGoogle Scholar
[33] Olsson, Martin. The bar construction and affine stacks. Preprint. Available at http://math.berkeley.edu/molsson/.
[34] Poonen, Bjorn. Computing rational points on curves. Number theory for the millennium, III (Urbana, IL, 2000), 149–172, A K Peters, Natick, MA, 2002.Google Scholar
[35] Reutenauer, Christophe. Free Lie algebras. London Mathematical Society Monographs. New Series, 7. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1993.
[36] Rubin, Karl. The “main conjectures” of Iwasawa theory for imaginary quadratic fields. Invent. Math. 103 (1991), no. 1, 25–68.CrossRefGoogle Scholar
[37] Serre, Jean-Pierre. Galois cohomology. Translated from the French by Patrick Ion and revised by the author. Springer-Verlag, Berlin, 1997. x+210 pp.Google Scholar
[38] Serre, Jean-Pierre. Andr Weil 6 May 1906-6 August 1998 Biographical Memoirs of Fellows of the Royal Society, Vol. 45, (Nov., 1999), pp. 521–529
[39] Serre, Jean-Pierre. Lie algebras and Lie groups. 1964 lectures given at Harvard University. Second edition. Lecture Notes in Mathematics, 1500. Springer-Verlag, Berlin, 1992. viii+168 pp.Google Scholar
[40] Simpson, Carlos T.Higgs bundles and local systems. Inst. Hautes Études Sci. Publ. Math. No. 75 (1992), 5–95.CrossRefGoogle Scholar
[41] Szamuely, Tamas. Galois Groups and Fundamental Groups. Cambridge Studies in Advanced Mathematics, vol. 117, Cambridge University Press, 2009.Google Scholar
[42] Venjakob, Otmar. On the Iwasawa theory of p-adic Lie extensions. Compositio Math. 138 (2003), no. 1, 1–54.CrossRefGoogle Scholar
[43] Weil, André. L'arithmétique sur les courbes algébriques. Acta Math. 52 (1929), no. 1, 281–315.CrossRefGoogle Scholar
[44] Weil, André. Généralisation des fonctions abéliennes. J. Math Pur. Appl. 17 (1938), no. 9, 47–87.Google Scholar
[45] Wiles, Andrew. Modular elliptic curves and Fermat's last theorem. Ann. of Math. (2) 141 (1995), no. 3, 443–551.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×