Skip to main content Accessibility help
×
  • Cited by 52
Publisher:
Cambridge University Press
Online publication date:
February 2017
Print publication year:
2016
Online ISBN:
9781139208468

Book description

Stochastic systems provide powerful abstract models for a variety of important real-life applications: for example, power supply, traffic flow, data transmission. They (and the real systems they model) are often subject to phase transitions, behaving in one way when a parameter is below a certain critical value, then switching behaviour as soon as that critical value is reached. In a real system, we do not necessarily have control over all the parameter values, so it is important to know how to find critical points and to understand system behaviour near these points. This book is a modern presentation of the 'semimartingale' or 'Lyapunov function' method applied to near-critical stochastic systems, exemplified by non-homogeneous random walks. Applications treat near-critical stochastic systems and range across modern probability theory from stochastic billiards models to interacting particle systems. Spatially non-homogeneous random walks are explored in depth, as they provide prototypical near-critical systems.

Reviews

'This is another impressive volume in the prestigious `Cambridge Tracts in Mathematics' series … The authors of this book are well-known for their long standing and well-recognized contributions to this area of research. Besides their own results published over the last two decades, the authors cover all significant achievements up to date … It is remarkable to see detailed `Bibliographical notes' at the end of each chapter. The authors have done a great job by providing valuable information about the historical development of any topic treated in this book. We find extremely interesting facts, stories and references. All this makes the book more than interesting to read and use.'

Jordan M. Stoyanov Source: Zentralblatt MATH

'This book gives a comprehensive account of the study of random walks with spatially non-homogeneous transition kernels. The main theme is to study recurrence versus transience and moments of passage times, as well as path asymptotics, by constructing suitable Lyapunov functions, which define semi-martingales when composed with the random walk. Of special interest are the Lamperti processes, which are stochastic processes on [0, ∞) with drift vanishing asymptotically on the order of 1/x as the space variable x tends to infinity. … Each chapter ends with detailed bibliographical notes.'

Rongfeng Sun Source: Mathematical Reviews

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
[1] M., Abramowitz and I. A., Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, vol. 55, U.S. Government Printing Office, Washington, D.C., 1964 Google Scholar.
[2] K. S., Alexander, Excursions and local limit theorems for Bessel-like random walks, Electron. J. Probab. 16 (2011 Google Scholar), no. 1, 1–44.
[3] O. S. M., Alves, F. P., Machado, and S. Yu., Popov, The shape theorem for the frog model, Ann. Appl. Probab. 12 (2002 Google Scholar), no. 2, 533–546.
[4] W. J., Anderson, Continuous-time Markov chains, Springer Series in Statistics: Probability and its Applications, Springer-Verlag, New York, 1991 Google Scholar.
[5] E. D., Andjel, M. V., Menshikov, and V. V., Sisko, Positive recurrence of processes associated to crystal growth models, Ann. Appl. Probab. 16 (2006 Google Scholar), no. 3, 1059–1085.
[6] S., Asmussen, Applied probability and queues, second ed., Applications of Mathematics (New York), vol. 51, Springer-Verlag, New York, 2003 Google Scholar.
[7] S., Aspandiiarov and R., Iasnogorodski, Tails of passage-times and an application to stochastic processes with boundary reflection in wedges, Stochastic Process. Appl. 66 (1997 Google Scholar), no. 1, 115–145.
[8] S., Aspandiiarov and R., Iasnogorodski, Asymptotic behaviour of stationary distributions for countable Markov chains, with some applications, Bernoull. 5 (1999 Google Scholar), no. 3, 535–569.
[9] S., Aspandiiarov and R., Iasnogorodski, General criteria of integrability of functions of passage-times for nonnegative stochastic processes and their applications, Theory Probab. Appl. 43 (1999 Google Scholar), 343–369, translated from Teor. Veroyatnost. i Primenen. 43 (1998) 509–539 (in Russian).
[10] S., Aspandiiarov, R., Iasnogorodski, and M., Menshikov, Passage-time moments for nonnegative stochastic processes and an application to reflected random walks in a quadrant, Ann. Probab. 24 (1996 Google Scholar), no. 2, 932–960.
[11] K. B., Athreya and P. E., Ney, Branching processes, Dover Publications, Inc., Mineola, NY, 2004 Google Scholar, reprint of the 1972 original.
[12] O., Aydogmus, A. P., Ghosh, S., Ghosh, and A., Roitershtein, Colored maximal branching processes, Theory Probab. Appl. 59 (2015 Google Scholar), no. 4, 663–672, translated from Teor. Veroyatnost. i Primenen. 59 (2014) 790–800 (in Russian).
[13] K., Azuma, Weighted sums of certain dependent random variables, Tohoku Math. J. 19 (1967 Google Scholar), no. 2, 357–367.
[14] L., Bachelier, Théorie de la spéculation, Ann. Sci. Ècole Norm. Sup. 17 (1900 Google Scholar), no. 3, 21–86.
[15] M. N., Barber and B. W., Ninham, Random and restricted walks: theory and applications, Gordon and Breach, New York, 1970 Google Scholar.
[16] L. E., Baum, On convergence to +∞ in the law of large numbers, Ann. Math. Statist. 34 (1963 Google Scholar), 219–222.
[17] V., Belitsky, P. A., Ferrari, M. V., Menshikov, and S. Yu., Popov, A mixture of the exclusion process and the voter model, Bernoull. 7 (2001 Google Scholar), no. 1, 119–144.
[18] M., Benaim, Vertex-reinforced random walks and a conjecture of Pemantle, Ann. Probab. 25 (1997 Google Scholar), no. 1, 361–392.
[19] I., Benjamini, R., Izkovsky, and H., Kesten, On the range of the simple random walk bridge on groups, Electron. J. Probab. 12 (2007 Google Scholar), no. 20, 591–612.
[20] I., Benjamini, G., Kozma, and B., Schapira, A balanced excited random walk, C. R. Math. Acad. Sci. Paris 349 (2011 Google Scholar), no. 7–8, 459–462.
[21] I., Benjamini and D. B., Wilson, Excited random walk, Electron. Comm. Probab. 8 (2003 Google Scholar), 86–92 (electronic).
[22] J., Bérard and A., Ramírez, Central limit theorem for the excited random walk in dimension D ≥ 2, Electron. Comm. Probab. 12 (2007 Google Scholar), 303–314 (electronic).
[23] H. C., Berg, Random walks in biology, expanded ed., Princeton University Press, New Jersey, 1993 Google Scholar.
[24] J., Bertoin and I., Kortchemski, Self-similar scaling limits of Markov chains on the positive integers, Ann. Appl. Probab (2016 Google Scholar).
[25] P., Billingsley, Probability and measure, third ed., Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons Inc., New York, 1995 Google Scholar.
[26] N. H., Bingham, Random walk on spheres, Z. Wahrscheinlichkeitstheorie und Verw. Gebiet. 22 (1972 Google Scholar), 169–192.
[27] D., Blackwell, On transient Markov processes with a countable number of states and stationary transition probabilities, Ann. Math. Statist. 26 (1955 Google Scholar), 654–658.
[28] D., Blackwell and D., Freedman, A remark on the coin tossing game, Ann. Math. Statist. 35 (1964 Google Scholar), 1345–1347.
[29] J., Bojarski, R., Smolenski, A., Kempski, and P., Lezynski, Pearson's random walk approach to evaluating interference generated by a group of converters, Appl. Math. Comput. 219 (2013 Google Scholar), no. 12, 6437–6444.
[30] P., Bougerol, Oscillation des produits de matrices aléatoires dont l'exposant de Lyapounov est nul, Lyapunov exponents (Bremen, 1984), Lecture Notes in Math., vol. 1186, Springer, Berlin, 1986 Google Scholar, pp. 27–36.
[31] P., Bougerol and J., Lacroix, Products of random matrices with applications to Schrödinger operators, Progress in Probability and Statistics, vol. 8, Birkhäuser Boston Inc., Boston, MA, 1985 Google Scholar.
[32] P., Bovet and S., Benhamou, Spatial analysis of animals' movements using a correlated random walk model, J. Theoret. Biol. 131 (1988 Google Scholar), 419–433.
[33] L., Breiman, Transient atomic Markov chains with a denumerable number of states, Ann. Math. Statist. 29 (1958 Google Scholar), 212–218.
[34] M., Campanino and D., Petritis, Random walks on randomly oriented lattices, Markov Process. Related Field. 9 (2003 Google Scholar), no. 3, 391–412.
[35] B., Carazza, The history of the random-walk problem: considerations on the interdisciplinarity in modern physics, Riv. Nuovo Cimento (2. 7 (1977 Google Scholar), no. 3, 419–427.
[36] J., Cerny, Moments and distribution of the local time of a two-dimensional random walk, Stochastic Process. Appl. 117 (2007 Google Scholar), no. 2, 262–270.
[37] M.-F., Chen, On three classical problems for Markov chains with continuous time parameters, J. Appl. Probab. 28 (1991 Google Scholar), no. 2, 305–320.
[38] B. D., Choi and B., Kim, Non-ergodicity criteria for denumerable continuous time Markov processes, Oper. Res. Lett. 32 (2004 Google Scholar), no. 6, 574–580.
[39] P.-L., Chou and R. Z., Khas'minskiĭ, The method of Lyapunov function for the analysis of the absorption and explosion of Markov chains, Probl. Inf. Transm. 47 (2011 Google Scholar), no. 3, 232–250, translated from Problemy Peredachi Informatsii 47 (2011) 19–38 (in Russian).
[40] Y. S., Chow, H., Robbins, and H., Teicher, Moments of randomly stopped sums, Ann. Math. Statist. 36 (1965 Google Scholar), 789–799.
[41] Y. S., Chow and H., Teicher, Probability theory: Independence, interchangeability, martingales, third ed., Springer Texts in Statistics, Springer-Verlag, New York, 1997 Google Scholar.
[42] Y. S., Chow and C.-H., Zhang, A note on Feller's strong law of large numbers, Ann. Probab. 14 (1986 Google Scholar), no. 3, 1088–1094.
[43] F., Chung and L., Lu, Complex graphs and networks, CBMS Regional Conference Series in Mathematics, vol. 107, Published for the Conference Board of the Mathematical Sciences, Washington, DC, by the American Mathematical Society, Providence, RI, 2006 Google Scholar.
[44] K. L., Chung, On the maximum partial sums of sequences of independent random variables, Trans. Amer.Math. Soc. 64 (1948 Google Scholar), 205–233.
[45] K. L., Chung, Markov chains with stationary transition probabilities, Second ed. Die Grundlehren der mathematischenWissenschaften, Band 104, Springer-Verlag New York Inc., New York, 1967 Google Scholar.
[46] K. L., Chung, A course in probability theory, third ed., Academic Press Inc., San Diego, CA, 2001 Google Scholar.
[47] K. L., Chung and W. H. J., Fuchs, On the distribution of values of sums of random variables, Mem. Amer.Math. Soc. 1951 (1951 Google Scholar), no. 6, 12.
[48] P., Clifford and A., Sudbury, A model for spatial conflict, Biometrik. 60 (1973 Google Scholar), 581–588.
[49] E. A., Codling, M. J., Plank, and S., Benhamou, Random walk models in biology, J. R. Soc. Interfac. 5 (2008 Google Scholar), no. 25, 813–834.
[50] J. W., Cohen, Analysis of random walks, Studies in Probability, Optimization and Statistics, vol. 2, IOS Press, Amsterdam, 1992 Google Scholar.
[51] J. W., Cohen, On the random walk with zero drifts in the first quadrant of R2, Comm. Statist. Stochastic Models 8 (1992 Google Scholar), no. 3, 359–374.
[52] F., Comets, M. V., Menshikov, and S. Yu., Popov, One-dimensional branching random walk in a random environment: a classification, Markov Process. Related Field. 4 (1998 Google Scholar), no. 4, 465–477, I Brazilian School in Probability (Rio de Janeiro, 1997).
[53] F., Comets, M. V., Menshikov, S., Volkov, and A. R., Wade, Random walk with barycentric self-interaction, J. Stat. Phys. 143 (2011 Google Scholar), no. 5, 855–888.
[54] F., Comets and S., Popov, On multidimensional branching random walks in random environment, Ann. Probab. 35 (2007 Google Scholar), no. 1, 68–114.
[55] F., Comets and S., Popov, Shape and local growth for multidimensional branching random walks in random environment, ALEA Lat. Am. J. Probab. Math. Stat. 3 (2007 Google Scholar), 273–299.
[56] F., Comets, S., Popov, G. M., Schütz, and M., Vachkovskaia, Billiards in a general domain with random reflections, Arch. Ration. Mech. Anal. 191 (2009 Google Scholar), no. 3, 497–537.
[57] F., Comets, S., Popov, G. M., Schütz, and M., Vachkovskaia, Knudsen gas in a finite random tube: transport diffusion and first passage properties, J. Stat. Phys. 140 (2010 Google Scholar), no. 5, 948–984.
[58] F., Comets, M., Menshikov, and S., Popov, Lyapunov functions for random walks and strings in random environment, Ann. Probab. 26 (1998 Google Scholar), no. 4, 1433–1445.
[59] P., Coolen-Schrijner and E. A. van, Doorn, Analysis of random walks using orthogonal polynomials, J. Comput. Appl. Math. 99 (1998 Google Scholar), no. 1–2, 387–399.
[60] E., Crane, N., Georgiou, S., Volkov, A. R., Wade, and R. J., Waters, The simple harmonic urn, Ann. Probab. 39 (2011 Google Scholar), no. 6, 2119–2177.
[61] E., Csáki, On the lower limits of maxima and minima of Wiener process and partial sums, Z. Wahrsch. Verw. Gebiet. 43 (1978 Google Scholar), no. 3, 205–221.
[62] E., Csáki, M., Csörgʺo, A., Földes, and P., Révész, On the local time of random walk on the 2-dimensional comb, Stochastic Process. Appl. 121 (2011 Google Scholar), no. 6, 1290–1314.
[63] E., Csáki, A., Földes, and P., Révész, Joint asymptotic behavior of local and occupation times of random walk in higher dimension, Studia Sci.Math. Hungar. 44 (2007 Google Scholar), no. 4, 535–563.
[64] E., Csáki, A., Földes, and P., Révész, Transient nearest neighbor random walk and Bessel process, J. Theoret. Probab. 22 (2009 Google Scholar), no. 4, 992–1009.
[65] E., Csáki, A., Földes, and P., Révész, Transient nearest neighbor random walk on the line, J. Theoret. Probab. 22 (2009 Google Scholar), no. 1, 100–122.
[66] E., Csáki, P., Révész, and J., Rosen, Functional laws of the iterated logarithm for local times of recurrent random walks on Z2, Ann. Inst. H. Poincaré Probab. Statist. 34 (1998 Google Scholar), no. 4, 545–563.
[67] J. De, Coninck, F., Dunlop, and T., Huillet, Random walk weakly attracted to a wall, J. Stat. Phys. 133 (2008 Google Scholar), no. 2, 271–280.
[68] D. De, Blassie and R., Smits, The influence of a power law drift on the exit time of Brownian motion from a half-line, Stochastic Process. Appl. 117 (2007 Google Scholar), no. 5, 629–654.
[69] P., Deheuvels and P., Révész, Simple random walk on the line in random environment, Probab. Theory Relat. Field. 72 (1986 Google Scholar), no. 2, 215–230.
[70] F. den, Hollander, Random polymers, Lecture Notes in Mathematics, vol. 1974, Springer-Verlag, Berlin, 2009 Google Scholar, Lectures from the 37th Probability Summer School held in Saint-Flour, 2007.
[71] F. den, Hollander, M. V., Menshikov, and S. Yu., Popov, A note on transience versus recurrence for a branching random walk in random environment, J. Statist. Phys. 95 (1999 Google Scholar), no. 3–4, 587–614.
[72] D., Denisov, D., Korshunov, and V., Wachtel, Potential analysis for positive recurrent Markov chains with asymptotically zero drift: power-type asymptotics, Stochastic Process. Appl. 123 (2013 Google Scholar), no. 8, 3027–3051.
[73] D. E., Denisov and S. G., Foss, On transience conditions for Markov chains and random walks, Siberian Math. J. 44 (2003 Google Scholar), no. 1, 44–57, translated from Sibirsk. Mat. Zh. 44 (2003) 53–68, in Russian.
[74] C., Derman and H., Robbins, The strong law of large numbers when the first moment does not exist, Proc. Nat. Acad. Sci. U.S.A. 41 (1955 Google Scholar), 586–587.
[75] B., Derrida, S., Goldstein, J. L., Lebowitz, and E. R., Speer, Shift equivalence of measures and the intrinsic structure of shocks in the asymmetric simple exclusion process, J. Statist. Phys. 93 (1998 Google Scholar), no. 3–4, 547–571.
[76] W., Doeblin, Éléments d'une théorie générale des chaines simples constantes de Markoff, Ann. Sci. Ècole Norm. Sup. (3. 57 (1940 Google Scholar), 61–111.
[77] M. D., Donsker and S. R. S., Varadhan, On the number of distinct sites visited by a random walk, Comm. Pure Appl. Math. 32 (1979 Google Scholar), no. 6, 721–747.
[78] J. L., Doob, Stochastic processes, John Wiley & Sons Inc., New York, 1953 Google Scholar.
[79] R., Douc, G., Fort, E., Moulines, and P., Soulier, Practical drift conditions for subgeometric rates of convergence, Ann. Appl. Probab. 14 (2004 Google Scholar), no. 3, 1353–1377.
[80] D. Y., Downham and S. B., Fotopoulos, The transient behaviour of the simple random walk in the plane, J. Appl. Probab. 25 (1988 Google Scholar), no. 1, 58–69.
[81] P. G., Doyle and J. L., Snell, Random walks and electric networks, Carus Mathematical Monographs, vol. 22, Mathematical Association of America, Washington, DC, 1984 Google Scholar.
[82] R., Durrett, Ten lectures on particle systems, Lectures on probability theory (Saint-Flour, 1993), Lecture Notes in Math., vol. 1608, Springer, Berlin, 1995 Google Scholar, pp. 97–201.
[83] R., Durrett, Probability: theory and examples, fourth ed., Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge University Press, Cambridge, 2010 Google Scholar.
[84] A., Dvoretzky and P., Erdʺos, Some problems on random walk in space, Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, 1950 (Berkeley and Los Angeles), University of California Press, 1951 Google Scholar, pp. 353–367.
[85] A., Eibeck and W., Wagner, Stochastic interacting particle systems and nonlinear kinetic equations, Ann. Appl. Probab. 13 (2003 Google Scholar), no. 3, 845–889.
[86] A., Einstein, Investigations on the theory of the Brownian movement, Dover Publications Inc., New York, 1956, Edited with notes by R., Fürth, translated by A. D., Cowper Google Scholar.
[87] R., Eldan, F., Nazarov, and Y., Peres, How many matrices can be spectrally balanced simultaneously? Preprint. (2016 Google Scholar).
[88] P., Erdʺos and S. J., Taylor, Some problems concerning the structure of random walk paths, Acta Math. Acad. Sci. Hungar. 11 (1960 Google Scholar), 137–162.
[89] K. B., Erickson, The strong law of large numbers when the mean is undefined, Trans. Amer. Math. Soc. 185 (1973 Google Scholar), 371–381.
[90] S. N., Evans, Stochastic billiards on general tables, Ann. Appl. Probab. 11 (2001 Google Scholar), no. 2, 419–437. References 349
[91] A. M., Fal', Recurrence times for certain Markov random walks, Ukrainian Math. J. 23 (1971 Google Scholar), 676–681, translated from Ukrain. Mat. Zh. 23 (1971) 824–830 (in Russian).
[92] A. M., Fal', Generalization of the results obtained by R. L., Dobrushin for additive functionals of a Markov random walk, Theory Probab. Appl. 22 (1978 Google Scholar), 569–571, translated from Teor. Veroyatnost. i Primenen. 22 (1977) 582–584 (in Russian).
[93] A. M., Fal', Certain limit theorems for an elementary Markov random walk, Ukrainian Math. J. 33 (1981 Google Scholar), 433–435, translated from Ukrain. Mat. Zh. 33 (1981) 564–566 (in Russian).
[94] E. F., Fama, The behavior of stock-market prices, J. Busines. 38 (1965 Google Scholar), 34–105.
[95] G., Fayolle, V. A., Malyshev, and M. V., Men'shikov, Random walks in a quarter plane with zero drifts. I. Ergodicity and null recurrence, Ann. Inst. H. Poincaré Probab. Statist. 28 (1992 Google Scholar), no. 2, 179–194.
[96] G., Fayolle, V. A., Malyshev, and M. V., Menshikov, Topics in the constructive theory of countable Markov chains, Cambridge University Press, Cambridge, 1995 Google Scholar.
[97] W., Feller, A limit theorem for random variables with infinite moments, Amer. J. Math. 68 (1946 Google Scholar), 257–262.
[98] W., Feller, An introduction to probability theory and its applications. Vol. I, Third ed., John Wiley & Sons Inc., New York, 1968 Google Scholar.
[99] W., Feller, An introduction to probability theory and its applications. Vol. II., Second ed., John Wiley & Sons Inc., New York, 1971 Google Scholar.
[100] P. A., Ferrari, Shock fluctuations in asymmetric simple exclusion, Probab. Theory Related Field. 91 (1992 Google Scholar), no. 1, 81–101.
[101] P. A., Ferrari, Shocks in one-dimensional processes with drift, Probability and phase transition (Cambridge, 1993), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 420, Kluwer Acad. Publ., Dordrecht, 1994 Google Scholar, pp. 35–48.
[102] P. A., Ferrari, C., Kipnis, and E., Saada, Microscopic structure of travelling waves in the asymmetric simple exclusion process, Ann. Probab. 19 (1991 Google Scholar), no. 1, 226–244.
[103] Yu. P., Filonov, Criterion for ergodicity of homogeneous discrete Markov chains, Ukrain. Math. J. 41 (1989 Google Scholar), 1223–1225, translated from Ukrain. Mat. Zh. 41 (1989) 1421–1422.
[104] L., Flatto, A problem on random walk, Quart. J. Math. Oxford Ser. (2. 9 (1958 Google Scholar), 299–300.
[105] S., Foss, D., Korshunov, and S., Zachary, An introduction to heavy-tailed and subexponential distributions, second ed., Springer Series in Operations Research and Financial Engineering, Springer, New York, 2013 Google Scholar.
[106] S. G., Foss and D. E., Denisov, On transience conditions for Markov chains, Siberian Math. J. 42 (2001 Google Scholar), no. 2, 364–371, translated from Sibirsk. Mat. Zh. 42 (2001) 425–433, in Russian.
[107] F. G., Foster, Markoff chains with an enumerable number of states and a class of cascade processes, Math. Proc. Cambridge Philos. Soc. 47 (1951 Google Scholar), 77–85.
[108] F. G., Foster, On the stochastic matrices associated with certain queuing processes, Ann. Math. Statistic. 24 (1953 Google Scholar), 355–360.
[109] J.-D., Fouks, E., Lesigne, and M., Peigné, Étude asymptotique d'une marche aléatoire centrifuge, Ann. Inst. H. Poincaré Probab. Statist. 42 (2006 Google Scholar), no. 2, 147–170.
[110] A. S., Gaĭrat, V. A., Malyshev, M.V., Men'shikov, and K. D., Pelikh, Classification of Markov chains that describe the evolution of random strings, Uspekhi Mat. Nauk 50 (1995 Google Scholar), no. 2(302), 5–24.
[111] A. S., Gajrat, V. A., Malyshev, and A. A., Zamyatin, Two-sided evolution of a random chain, Markov Process. Related Field. 1 (1995 Google Scholar), no. 2, 281–316.
[112] L., Gallardo, Comportement asymptotique des marches aléatoires associées aux polynomes de Gegenbauer et applications, Adv. Appl. Probab. 16 (1984 Google Scholar), no. 2, 293–323.
[113] C., Gallesco, S., Popov, and G. M., Schütz, Localization for a random walk in slowly decreasing random potential, J. Stat. Phys. 150 (2013 Google Scholar), no. 2, 285–298.
[114] N., Georgiou, M. V., Menshikov, A., Mijatovíc, and A. R., Wade, Anomalous recurrence properties of many-dimensional zero-drift random walks, Adv. Appl. Probab. 48 (2016 Google Scholar), 99–118.
[115] N., Georgiou and A. R., Wade, Non-homogeneous random walks on a semi-infinite strip, Stochastic Process. Appl. 124 (2014 Google Scholar), no. 10, 3179–3205.
[116] G., Giacomin, Random polymer models, Imperial College Press, London, 2007 Google Scholar.
[117] J., Gillis, Centrally biased discrete random walk, Quart. J. Math. Oxford Ser. (2. 7 (1956 Google Scholar), 144–152.
[118] M. L., Glasser and I. J., Zucker, Extended Watson integrals for the cubic lattices, Proc. Nat. Acad. Sci. U.S.A. 74 (1977 Google Scholar), no. 5, 1800–1801.
[119] A. O., Golosov, Limit distributions for random walks in a random environment, Dokl. Akad. Nauk SSS. 271 (1983 Google Scholar), no. 1, 25–29.
[120] M., González, M., Molina, and I. del, Puerto, Asymptotic behaviour of critical controlled branching processes with random control functions, J. Appl. Probab. 42 (2005 Google Scholar), no. 2, 463–477.
[121] P. S., Griffin, An integral test for the rate of escape of d-dimensional random walk, Ann. Probab. 11 (1983 Google Scholar), no. 4, 953–961.
[122] R. F., Gundy and D., Siegmund, On a stopping rule and the central limit theorem, Ann. Math. Statist. 38 (1967 Google Scholar), 1915–1917.
[123] A., Gut, Probability: A graduate course, Springer, 2005 Google Scholar.
[124] Y., Hamana, An almost sure invariance principle for the range of random walks, Stochastic Process. Appl. 78 (1998 Google Scholar), no. 2, 131–143.
[125] K., Hamza and F. C., Klebaner, Conditions for integrability of Markov chains, J. Appl. Probab. 32 (1995 Google Scholar), no. 2, 541–547.
[126] C. M., Harris and P. G., Marlin, A note on feedback queues with bulk service, J. Assoc. Comput. Mach. 19 (1972 Google Scholar), 727–733.
[127] T. E., Harris, First passage and recurrence distributions, Trans. Amer. Math. Soc. 73 (1952 Google Scholar), 471–486.
[128] W. M., Hirsch, A strong law for the maximum cumulative sum of independent random variables, Comm. Pure Appl. Math. 18 (1965 Google Scholar), 109–127.
[129] J. L., Hodges, Jr and M., Rosenblatt, Recurrence-time moments in random walks, Pacific J. Math. 3 (1953 Google Scholar), 127–136.
[130] W., Hoeffding, Probability inequalities for sums of bounded random variables, J. Amer. Statist. Assoc. 58 (1963 Google Scholar), 13–30.
[131] P., Holgate, Random walk models for animal behavior, Statistical Ecology: vol. 2 (G., Patil, E., Pielou, and W., Walters, eds.), Penn State University Press, University Park, PA, 1971 Google Scholar, pp. 1–12.
[132] R. A., Holley and T. M., Liggett, Ergodic theorems for weakly interacting infinite systems and the voter model, Ann. Probabilit. 3 (1975 Google Scholar), no. 4, 643–663.
[133] O., Hryniv, I. M., MacPhee, M. V., Menshikov, and A. R., Wade, Non-homogeneous random walks with non-integrable increments and heavy-tailed random walks on strips, Electron. J. Probab. 17 (2012 Google Scholar), article 59.
[134] O., Hryniv and M., Menshikov, Long-time behaviour in a model of microtubule growth, Adv. Appl. Probab. 42 (2010 Google Scholar), no. 1, 268–291.
[135] O., Hryniv, M. V., Menshikov, and A. R., Wade, Excursions and path functionals for stochastic processes with asymptotically zero drifts, Stochastic Process. Appl. 123 (2013 Google Scholar), no. 6, 1891–1921.
[136] O., Hryniv, M. V., Menshikov, and A. R., Wade, Random walk in mixed random environment without uniform ellipticity, Proc. Stekov. Inst. Math. 282 (2013 Google Scholar), 106–123.
[137] Y., Hu and H., Nyrhinen, Large deviations view points for heavy-tailed random walks, J. Theoret. Probab. 17 (2004 Google Scholar), no. 3, 761–768.
[138] Y., Hu and Z., Shi, The limits of Sinai's simple random walk in random environment, Ann. Probab. 26 (1998 Google Scholar), no. 4, 1477–1521.
[139] B. D., Hughes, Random walks and random environments. Vol. 1, Oxford Science Publications, The Clarendon Press Oxford University Press, New York, 1995 Google Scholar.
[140] T., Huillet, Random walk with long-range interaction with a barrier and its dual: exact results, J. Comput. Appl. Math. 233 (2010 Google Scholar), no. 10, 2449–2467.
[141] N. C., Jain and W. E., Pruitt, Maxima of partial sums of independent random variables, Z.Wahrscheinlichkeitstheorie und Verw. Gebiet. 27 (1973 Google Scholar), 141–151.
[142] S. F., Jarner and G. O., Roberts, Polynomial convergence rates of Markov chains, Ann. Appl. Probab. 12 (2002 Google Scholar), no. 1, 224–247.
[143] R. C., Jones, On the theory of fluctuations in the decay of sound, J. Acoust. Soc. Amer. 11 (1940 Google Scholar), 324–332.
[144] P., Jung, The noisy voter-exclusion process, Stochastic Process. Appl. 115 (2005 Google Scholar), no. 12, 1979–2005.
[145] V. V., Kalashnikov, Practical stability of difference equations, Automation and Remote Contro. 9 (1967 Google Scholar), 1404–1407, translated from Avtomatika i Telemekhanika 9 (1967) 172–175 (in Russian).
[146] V. V., Kalashnikov, The use of Lyapunov's method in the solution of queueing theory problems, Engrg. Cybernetics (1968 Google Scholar), no. 5, 77–84, translated from Izv. Akad. Nauk SSSR Tehn. Kibernet. 1968 89–95 (in Russian).
[147] V. V., Kalashnikov, Reliability analysis by Lyapunov's method, Engrg. Cybernetics (1970 Google Scholar), no. 2, 257–269, translated from Izv. Akad. Nauk SSSR Tehn. Kibernet. 1970 65–76 (in Russian).
[148] V. V., Kalashnikov, Analysis of ergodicity of queueing systems by means of the direct method of Lyapunov, Automation and Remote Contro. 32 (1971 Google Scholar), 559–566, translated from Avtomatika i Telemekhanika 32 (1971) 46–54 (in Russian).
[149] V. V., Kalashnikov, The property of γ -reflexivity for Markov sequences, Soviet Math. Dokl. 14 (1973 Google Scholar), 1869–1873, translated from Dokl. Akad. Nauk SSSR 213 (1973) 1243–1246 (in Russian).
[150] O., Kallenberg, Foundations of modern probability, second ed., Probability and its Applications (New York), Springer-Verlag, New York, 2002 Google Scholar.
[151] M., Kaplan, A sufficient condition for nonergodicity of a Markov chain, IEEE Trans. Inform. Theor. 25 (1979 Google Scholar), no. 4, 470–471.
[152] S., Karlin and J., McGregor, Representation of a class of stochastic processes, Proc. Nat. Acad. Sci. U.S.A. 41 (1955 Google Scholar), 387–391.
[153] S., Karlin and J., McGregor, Random walks, Illinois J. Math. 3 (1959 Google Scholar), 66–81.
[154] K., Kawazu, Y., Tamura, and H., Tanaka, Limit theorems for one-dimensional diffusions and random walks in random environments, Probab. Theor. Relat. Field. 80 (1989 Google Scholar), no. 4, 501–541.
[155] G., Keller, G., Kersting, and U., Rösler, On the asymptotic behaviour of discrete time stochastic growth processes, Ann. Probab. 15 (1987 Google Scholar), no. 1, 305–343.
[156] F. P., Kelly, Markovian functions of a Markov chain, Sankhya Ser.. 44 (1982 Google Scholar), no. 3, 372–379.
[157] J. H. B., Kemperman, The oscillating random walk, Stochastic Process. Appl. 2 (1974 Google Scholar), 1–29.
[158] D. G., Kendall, Some problems in the theory of queues, J. Roy. Statist. Soc. Ser. B. 13 (1951 Google Scholar), 151–173; discussion: 173–185.
[159] G., Kersting, On recurrence and transience of growth models, J. Appl. Probab. 23 (1986 Google Scholar), no. 3, 614–625.
[160] G., Kersting, Asymptotic distribution for stochastic difference equations, Stochastic Process. Appl. 40 (1992 Google Scholar), no. 1, 15–28.
[161] G., Kersting and F. C., Klebaner, Sharp conditions for nonexplosions and explosions in Markov jump processes, Ann. Probab. 23 (1995 Google Scholar), no. 1, 268–272.
[162] G., Kersting and F. C., Klebaner, Explosions in Markov processes and submartingale convergence, Athens Conference on Applied Probability and Time Series Analysis, Vol. I (1995), Lecture Notes in Statist., vol. 114, Springer, New York, 1996 Google Scholar, pp. 127–136.
[163] H., Kesten, The limit points of a normalized random walk, Ann. Math. Statist. 41 (1970 Google Scholar), 1173–1205.
[164] H., Kesten, The limit distribution of Sinai's random walk in random environment, Phys. A 138 (1986 Google Scholar), no. 1–2, 299–309.
[165] H., Kesten and R. A., Maller, Two renewal theorems for general random walks tending to infinity, Probab. Theor. Related Field. 106 (1996 Google Scholar), no. 1, 1–38.
[166] H., Kesten and R. A., Maller, Random walks crossing power law boundaries, Studia Sci. Math. Hungar. 34 (1998 Google Scholar), no. 1–3, 219–252.
[167] R. Z., Khas'minskii, On the stability of the trajectory of Markov processes, J. Appl. Math. Mech. 26 (1962 Google Scholar), 1554–1565.
[168] R. Z., Khas'minskii, Stochastic stability of differential equations, Monographs and Textbooks on Mechanics of Solids and Fluids: Mechanics and Analysis, vol. 7, Sijthoff & Noordhoff, Alphen aan den Rijn—Germantown, Md., 1980 Google Scholar, translated and updated version of the original Russian edition, Nauka, Moscow, 1969.
[169] B., Kim and I., Lee, Tests for nonergodicity of denumerable continuous time Markov processes, Comput. Math. Appl. 55 (2008 Google Scholar), no. 6, 1310–1321.
[170] J. F. C., Kingman, The ergodic behaviour of random walks, Biometrik. 48 (1961 Google Scholar), 391–396.
[171] J. F. C., Kingman, Two similar queues in parallel, Ann. Math. Statist. 32 (1961 Google Scholar), 1314–1323.
[172] J. F. C., Kingman, Random walks with spherical symmetry, Acta Math. 109 (1963 Google Scholar), 11–53.
[173] F. C., Klebaner, Stochastic difference equations and generalized gamma distributions, Ann. Probab. 17 (1989 Google Scholar), no. 1, 178–188.
[174] F. C., Klebaner, Introduction to stochastic calculus with applications, second ed., Imperial College Press, London, 2005 Google Scholar.
[175] L. A. Klein, Haneveld, Random walk on the quadrant, Stochastic Process. Appl. 26 (1987 Google Scholar), 228.
[176] L. A. Klein, Haneveld, Random walk in the quadrant, Ph.D. thesis, University of Amsterdam, 1996 Google Scholar.
[177] L. A. Klein, Haneveld and A. O., Pittenger, Escape time for a random walk from an orthant, Stochastic Process. Appl. 35 (1990 Google Scholar), no. 1, 1–9.
[178] H., Kleinert, Path integrals in quantum mechanics, statistics, polymer physics, and financial markets, fourth ed., World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2006 Google Scholar.
[179] M., Knudsen, Kinetic theory of gases: some modern aspects, Methuen's Monographs on Physical Subjects, Methuen, London, 1952 Google Scholar.
[180] D. A., Korshunov, Moments of stationaryMarkov chains with asymptotically zero drift, Sibirsk. Mat. Zh. 52 (2011 Google Scholar), no. 4, 829–840.
[181] E., Kosygina and M. P. W., Zerner, Excited random walks: results, methods, open problems, Bull. Inst. Math. Acad. Sin. (N.S.. 8 (2013 Google Scholar), no. 1, 105–157.
[182] Y., Kovchegov and N., Michalowski, A class of Markov chains with no spectral gap, Proc. Amer. Math. Soc. 141 (2013 Google Scholar), no. 12, 4317–4326.
[183] M. V., Kozlov, Random walk in a one-dimensional random medium, Teor. Verojatnost. i Primenen. 18 (1973 Google Scholar), 406–408.
[184] G., Kozma, T., Orenshtein, and I., Shinkar, Excited random walk with periodic cookies, Ann. Inst. H. Poincaré Probab. Statist. 52 (2016 Google Scholar).
[185] V. M., Kruglov, A strong law of large numbers for pairwise independent identically distributed random variables with infinite means, Statist. Probab. Lett. 78 (2008 Google Scholar), no. 7, 890–895.
[186] I., Kurkova and K., Raschel, Passage time from four to two blocks of opinions in the voter model and walks in the quarter plane, Queueing Syst. 74 (2013 Google Scholar), no. 2–3, 219–234.
[187] H. J., Kushner, On the stability of stochastic dynamical systems, Proc. Nat. Acad. Sci. U.S.A. 53 (1965 Google Scholar), 8–12.
[188] H. J., Kushner, Finite time stochastic stability and the analysis of tracking systems, IEEE Trans. Automatic Control AC-11 (1966 Google Scholar), 219–227.
[189] P., Küster, Asymptotic growth of controlled Galton–Watson processes, Ann. Probab. 13 (1985 Google Scholar), no. 4, 1157–1178.
[190] J., Lamperti, Criteria for the recurrence or transience of stochastic process. I., J. Math. Anal. Appl. 1 (1960 Google Scholar), 314–330.
[191] J., Lamperti, A new class of probability limit theorems, J. Math. Mech. 11 (1962 Google Scholar), 749–772.
[192] J., Lamperti, Criteria for stochastic processes. II. Passage-time moments, J. Math. Anal. Appl. 7 (1963 Google Scholar), 127–145.
[193] J., Lamperti, Maximal branching processes and ‘long-range percolation’, J. Appl. Probab. 7 (1970 Google Scholar), 89–98.
[194] J., Lamperti, Remarks on maximal branching processes, Teor. Verojatnost. i Primenen. 17 (1972 Google Scholar), 46–54.
[195] G. F., Lawler and V., Limic, Random walk: a modern introduction, Cambridge Studies in Advanced Mathematics, vol. 123, Cambridge University Press, Cambridge, 2010 Google Scholar.
[196] F. W., Leysieffer, Functions of finite Markov chains, Ann. Math. Statist. 38 (1967 Google Scholar), 206–212.
[197] T. M., Liggett, Coupling the simple exclusion process, Ann. Probabilit. 4 (1976 Google Scholar), no. 3, 339–356.
[198] T. M., Liggett, Interacting particle systems, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 276, Springer-Verlag, New York, 1985 Google Scholar.
[199] T. M., Liggett, Stochastic interacting systems: contact, voter and exclusion processes, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 324, Springer-Verlag, Berlin, 1999 Google Scholar.
[200] M., Loève, Probability theory. I, fourth ed., Springer-Verlag, New York, 1977 Google Scholar, Graduate Texts in Mathematics, Vol. 45.
[201] M., Loève, Probability theory. I, fourth ed., Springer-Verlag, New York, 1977 Google Scholar, Graduate Texts in Mathematics, Vol. 45.
[202] G. G., Lowry (ed.), Markov chains and Monte Carlo calculations in polymer science, Marcel Dekker, New York, 1970 Google Scholar.
[203] F. P., Machado, M. V., Menshikov, and S. Yu., Popov, Recurrence and transience of multitype branching random walks, Stochastic Process. Appl. 91 (2001 Google Scholar), no. 1, 21–37.
[204] F. P., Machado and S. Yu., Popov, One-dimensional branching random walks in a Markovian random environment, J. Appl. Probab. 37 (2000 Google Scholar), no. 4, 1157–1163.
[205] F. P., Machado and S. Yu., Popov, Branching random walk in random environment on trees, Stochastic Process. Appl. 106 (2003 Google Scholar), no. 1, 95–106.
[206] I., MacPhee, M., Menshikov, D., Petritis, and S., Popov, A Markov chain model of a polling system with parameter regeneration, Ann. Appl. Probab. 17 (2007 Google Scholar), no. 5-6, 1447–1473.
[207] I., MacPhee, M. V., Menshikov, and M., Vachkovskaia, Dynamics of the non-homogeneous supermarket model, Stoch. Model. 28 (2012 Google Scholar), no. 4, 533–556.
[208] I. M., MacPhee and M. V., Menshikov, Critical random walks on two-dimensional complexes with applications to polling systems, Ann. Appl. Probab. 13 (2003 Google Scholar), no. 4, 1399–1422.
[209] I. M., MacPhee, M. V., Menshikov, S., Popov, and S., Volkov, Periodicity in the transient regime of exhaustive polling systems, Ann. Appl. Probab. 16 (2006 Google Scholar), no. 4, 1816–1850. References 355
[210] I. M., MacPhee, M. V., Menshikov, S., Volkov, and A. R., Wade, Passage-time moments and hybrid zones for the exclusion-voter model, Bernoull. 16 (2010 Google Scholar), no. 4, 1312–1342.
[211] I. M., MacPhee, M. V., Menshikov, and A. R., Wade, Angular asymptotics for multi-dimensional non-homogeneous random walks with asymptotically zero drift, Markov Process. Related Field. 16 (2010 Google Scholar), no. 2, 351–388.
[212] I. M., MacPhee, M. V., Menshikov, and A. R., Wade, Moments of exit times from wedges for non-homogeneous random walks with asymptotically zero drifts, J. Theoret. Probab. 26 (2013 Google Scholar), 1–30.
[213] V. A., Malyšev and M. V., Men'šikov, Ergodicity, continuity, and analyticity of countable Markov chains, Trans.MoscowMath. Soc. 39 (1979 Google Scholar), 1–48, translated from Trudy Moskov. Mat. Obshch. 39 (1979) 3–48 (in Russian).
[214] V. A., Malyshev, Classification of two-dimensional positive random walks and almost linear semimartingales, Soviet Math. Dokl. 13 (1972 Google Scholar), 136–139, translated from Dokl. Akad. Nauk SSSR 202 (1972) 526–528 (in Russian).
[215] V. A., Malyshev, Random grammars, Uspekhi Mat. Nauk 53 (1998 Google Scholar), no. 2(320), 107–134.
[216] X., Mao, Stochastic differential equations and applications, second ed., Horwood Publishing Limited, Chichester, 2008 Google Scholar.
[217] M. B., Marcus and J., Rosen, Logarithmic averages for the local times of recurrent random walks and Lévy processes, Stochastic Process. Appl. 59 (1995 Google Scholar), no. 2, 175–184.
[218] J. G., Mauldon, On non-dissipative Markov chains, Proc. Cambridge Philos. Soc. 53 (1957 Google Scholar), 825–835.
[219] W. H., McCrea and F. J. W., Whipple, Random paths in two and three dimensions, Proc. Roy. Soc. Edinburg. 60 (1940 Google Scholar), 281–298.
[220] M., Menshikov and D., Petritis, Explosion, implosion, and moments of passage times for continuous-time Markov chains: A semimartingale approach, Stochastic Process. Appl. 124 (2014 Google Scholar), no. 7, 2388–2414.
[221] M., Menshikov and S., Popov, On range and local time of many-dimensional submartingales, J. Theoret. Probab. 27 (2014 Google Scholar), no. 2, 601–617.
[222] M., Menshikov, S., Popov, A., Ramírez, and M., Vachkovskaia, On a general many-dimensional excited random walk, Ann. Probab. 40 (2012 Google Scholar), no. 5, 2106–2130.
[223] M., Menshikov and S., Volkov, Urn-related random walk with drift ρxα/tβ, Electron. J. Probab. 13 (2008 Google Scholar), no. 31, 944–960.
[224] M., Menshikov and R. J., Williams, Passage-time moments for continuous non-negative stochastic processes and applications, Adv. Appl. Probab. 28 (1996 Google Scholar), no. 3, 747–762.
[225] M., Menshikov and S., Zuyev, Polling systems in the critical regime, Stochastic Process. Appl. 92 (2001 Google Scholar), no. 2, 201–218.
[226] M. V., Menshikov, Ergodicity and transience conditions for random walks in the positive octant of space, Soviet Math. Dokl. 15 (1974 Google Scholar), 1118–1121, translated from Dokl. Akad. Nauk SSSR 217 (1974) 755–758 (in Russian).
[227] M. V., Menshikov, Martingale approach for Markov processes in random environment and branching Markov chains, Resenha. 3 (1997 Google Scholar), no. 2, 159–171. 356 References
[228] M. V., Menshikov, I. M., Asymont, and R., Iasnogorodskii, Markov processes with asymptotically zero drifts, Probl. Inf. Transm. 31 (1995 Google Scholar), 248–261, translated from Problemy Peredachi Informatsii 31 (1995) 60–75 (in Russian).
[229] M. V., Menshikov, D., Petritis, and A. R., Wade, Heavy-tailed random walks on complexes of half-lines, Preprint. (2016 Google Scholar).
[230] M. V., Menshikov and S. Yu., Popov, Exact power estimates for countable Markov chains, Markov Process. Related Field. 1 (1995 Google Scholar), no. 1, 57–78.
[231] M. V., Menshikov, S. Yu., Popov, V., Sisko, and M., Vachkovskaia, On a many-dimensional random walk in a rarefied random environment, Markov Process. Related Field. 10 (2004 Google Scholar), no. 1, 137–160.
[232] M. V., Menshikov, M., Vachkovskaia, and A. R., Wade, Asymptotic behaviour of randomly reflecting billiards in unbounded tubular domains, J. Stat. Phys. 132 (2008 Google Scholar), no. 6, 1097–1133.
[233] M. V., Menshikov and S. E., Volkov, Branching Markov chains: qualitative characteristics, Markov Process. Related Field. 3 (1997 Google Scholar), no. 2, 225–241.
[234] M. V., Menshikov and A. R., Wade, Random walk in random environment with asymptotically zero perturbation, J. Eur. Math. Soc. (JEMS. 8 (2006 Google Scholar), no. 3, 491–513.
[235] M. V., Menshikov and A. R., Wade, Logarithmic speeds for one-dimensional perturbed random walks in random environments, Stochastic Process. Appl. 118 (2008 Google Scholar), no. 3, 389–416.
[236] M. V., Menshikov and A. R., Wade, Rate of escape and central limit theorem for the supercritical Lamperti problem, Stochastic Process. Appl. 120 (2010 Google Scholar), no. 10, 2078–2099.
[237] F., Merkl and S. W. W., Rolles, Recurrence of edge-reinforced random walk on a two-dimensional graph, Ann. Probab. 37 (2009 Google Scholar), no. 5, 1679–1714.
[238] J.-F., Mertens, E., Samuel-Cahn, and S., Zamir, Necessary and sufficient conditions for recurrence and transience of Markov chains, in terms of inequalities, J. Appl. Probab. 15 (1978 Google Scholar), no. 4, 848–851.
[239] S., Meyn and R. L., Tweedie, Markov chains and stochastic stability, second ed., Cambridge University Press, Cambridge, 2009, With a prologue by Peter W., Glynn Google Scholar.
[240] R. G., MillerJr., Foster's Markov chain theorems in continuous time, Tech. Report 88, Applied Mathematics and Statistics Laboratory, Stanford University, 1963 Google Scholar.
[241] P. A. P., Moran, An introduction to probability theory, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1984 Google Scholar, Corrected reprint of the 1968 original.
[242] M. D., Moustafa, Input-output Markov processes, Proc. Konin. Neder. Akad. Wetens. A. Math. Sci. 19 (1957 Google Scholar), 112–118.
[243] J. R., Norris, Markov chains, Cambridge Series in Statistical and Probabilistic Mathematics, vol. 2, Cambridge University Press, Cambridge, 1998 Google Scholar.
[244] R., Nossal, Stochastic aspects of biological locomotion, J. Stat. Phys. 30 (1983 Google Scholar), 391–400.
[245] R. J., Nossal and G. H., Weiss, A generalized Pearson random walk allowing for bias, J. Stat. Phys. 10 (1974 Google Scholar), 245–253. References 357
[246] E., Nummelin, General irreducible Markov chains and nonnegative operators, Cambridge Tracts in Mathematics, vol. 83, Cambridge University Press, Cambridge, 1984 Google Scholar.
[247] S., Orey, Lecture notes on limit theorems for Markov chain transition probabilities, Van Nostrand Reinhold Co., London-New York-Toronto, 1971 Google Scholar, Van Nostrand Reinhold Mathematical Studies, No. 34.
[248] R. A., Orwoll and W. H., Stockmayer, Stochastic models for chain dynamics, Adv. Chem. Phys. 15 (1969 Google Scholar), 305–324.
[249] V. I., Oseledec, A multiplicative ergodic theorem. Characteristic Ljapunov, exponents of dynamical systems, TrudyMoskov. Mat. Obš?c. 19 (1968 Google Scholar), 179–210.
[250] A. G., Pakes, Some conditions for ergodicity and recurrence of Markov chains, Operations Res. 17 (1969 Google Scholar), 1058–1061.
[251] A. G., Pakes, Some remarks on a one-dimensional skip-free process with repulsion, J. Austral. Math. Soc. Ser. A 30 (1980 Google Scholar/81), no. 1, 107–128.
[252] E., Parzen, Stochastic processes, Classics in Applied Mathematics, vol. 24, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1999 Google Scholar, Reprint of the 1962 original.
[253] K., Pearson, The problem of the random walk, Nature 72 (1905 Google Scholar), 342.
[254] K., Pearson and J., Blakeman, A mathematical theory of random migration, Drapers' Company Research Memoirs Biometric Series, Dulau and co., London, 1906 Google Scholar.
[255] R., Pemantle, A survey of random processes with reinforcement, Probab. Surv. 4 (2007 Google Scholar), 1–79.
[256] R., Pemantle and S., Volkov, Vertex-reinforced random walk on Z has finite range, Ann. Probab. 27 (1999 Google Scholar), no. 3, 1368–1388.
[257] Y., Peres, S., Popov, and P., Sousi, On recurrence and transience of self-interacting random walks, Bull. Braz. Math. Soc. 44 (2013 Google Scholar), no. 4, 1–27.
[258] R. G., Pinsky, Positive harmonic functions and diffusion, Cambridge Studies in Advanced Mathematics, vol. 45, Cambridge University Press, Cambridge, 1995 Google Scholar.
[259] G., Polya, Ü ber eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im Straßennetz, Math. Ann. 84 (1921 Google Scholar), no. 1–2, 149–160.
[260] N. N., Popov, The rate of convergence for countable Markov chains, Theor. Probability Appl. 24 (1979 Google Scholar), no. 2, 401–405, translated from Teor. Verojatnost. i Primenen. 24 (1979) 395–399 (in Russian).
[261] W. E., Pruitt, The rate of escape of random walk, Ann. Probab. 18 (1990 Google Scholar), no. 4, 1417–1461.
[262] O., Raimond and B., Schapira, On some generalized reinforced random walk on integers, Electron. J. Probab. 14 (2009 Google Scholar), no. 60, 1770–1789.
[263] C., Rau, Sur le nombre de points visités par une marche aléatoire sur un amas infini de percolation, Bull. Soc. Math. Franc. 135 (2007 Google Scholar), no. 1, 135–169.
[264] Lord Rayleigh, On the resultant of a large number of vibrations of the same pitch and of arbitrary phase, Phil. Mag. Ser.. 10 (1880 Google Scholar), 73–78.
[265] J. A. F., Regnault, Calcul des chances et philosophie de la bourse, Mallet- Bachelier/Castel, Paris, 1863 Google Scholar.
[266] P. H. F., Reimberg and L. R., Abramo, Random flights through spaces of different dimensions, J. Math. Phys. 56 (2015 Google Scholar), no. 1, 013512.
[267] S. I., Resnick, A probability path, Birkhäuser Boston Inc., Boston, MA, 1999 Google Scholar.
[268] G. E. H., Reuter, Competition processes, Proc. 4th Berkeley Sympos. Math. Statist. and Prob., Vol. II, Univ. California Press, Berkeley, CA, 1961 Google Scholar, pp. 421–430.
[269] Pál, Révész, Random walk in random and non-random environments, third ed., World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2013 Google Scholar.
[270] D., Revuz, Markov chains, second ed., North-Holland Mathematical Library, vol. 11, North-Holland Publishing Co., Amsterdam, 1984 Google Scholar.
[271] P., Robert, Stochastic networks and queues, Applications of Mathematics, vol. 52, Springer-Verlag, Berlin, 2003 Google Scholar.
[272] L. C. G., Rogers and J. W., Pitman, Markov functions, Ann. Probab. 9 (1981 Google Scholar), no. 4, 573–582.
[273] B. A., Rogozin and S. G., Foss, The recurrence of an oscillating random walk, Theor. Probability Appl. 23 (1978 Google Scholar), no. 1, 155–162, translated from Teor. Verojatnost. i Primenen. 23 (1978) 161–169 (in Russian).
[274] M., Rosenblatt, Functions of a Markov process that are Markovian, J. Math. Mech. 8 (1959 Google Scholar), 585–596.
[275] W. A., Rosenkrantz, A local limit theorem for a certain class of random walks, Ann. Math. Statist. 37 (1966 Google Scholar), 855–859.
[276] N., Sandríc, Recurrence and transience property for a class of Markov chains, Bernoulli 19 (2013 Google Scholar), no. 5B, 2167–2199.
[277] N., Sandríc, Recurrence and transience criteria for two cases of stable-like Markov chains, J. Theoret. Probab. 27 (2014 Google Scholar), 754–788.
[278] K.-I., Sato, Lévy processes and infinitely divisible distributions, Cambridge Studies in Advanced Mathematics, vol. 68, Cambridge University Press, Cambridge, 1999 Google Scholar, translated from the 1990 Japanese original, Revised by the author.
[279] S., Schumacher, Diffusions with random coefficients, Ph.D. thesis, University of California, Los Angeles, 1984 Google Scholar.
[280] S., Schumacher, Diffusions with random coefficients, Particle systems, random media and large deviations (Brunswick, Maine, 1984), Contemp. Math., vol. 41, Amer. Math. Soc., Providence, RI, 1985 Google Scholar, pp. 351–356.
[281] L. I., Sennott, P. A., Humblet, and R. L., Tweedie, Mean drifts and the nonergodicity of Markov chains, Oper. Res. 31 (1983 Google Scholar), no. 4, 783–789.
[282] V., Shcherbakov and S., Volkov, Stability of a growth process generated by monomer filling with nearest-neighbour cooperative effects, Stochastic Process. Appl. 120 (2010 Google Scholar), no. 6, 926–948.
[283] L. A., Shepp, Symmetric random walk, Trans. Amer. Math. Soc. 104 (1962 Google Scholar), 144–153.
[284] L. A., Shepp, Recurrent random walks with arbitrarily large steps, Bull. Amer. Math. Soc. 70 (1964 Google Scholar), 540–542.
[285] T., Shiga, A., Shimizu, and T., Soshi, Passage-time moments for positively recurrent Markov chains, Nagoya Math. J. 162 (2001 Google Scholar), 169–185.
[286] A. N., Shiryaev, Probability, second ed., Graduate Texts in Mathematics, vol. 95, Springer-Verlag, New York, 1996, translated from the first (1980) Russian edition by R. P., Boas Google Scholar.
[287] M. F., Shlesinger and B. J., West (eds.), Random walks and their applications in the physical and biological sciences, American Institute of Physics, New York, 1984 Google Scholar.
[288] Ya. G., Sinaĭ, The limiting behavior of a one-dimensional random walk in a random medium, Theor. Probability Appl. 27 (1983 Google Scholar), 256–268, translated from Teor. Veroyatnost. i Primenen. 27 (1982) 247–258 (in Russian).
[289] A., Singh, A slow transient diffusion in a drifted stable potential, J. Theoret. Probab. 20 (2007 Google Scholar), no. 2, 153–166.
[290] P. E., Smouse, S., Focardi, P. R., Moorcroft, J. G., Kie, J. D., Forester, and J. M., Morales, Stochastic modelling of animal movement, Phil. Trans. Roy. Soc. Ser. B Biol. Sci. 365 (2010 Google Scholar), 2201–2211.
[291] F., Solomon, Random walks in a random environment, Ann. Probab. 3 (1975 Google Scholar), 1–31.
[292] F., Spitzer, Renewal theorems for Markov chains, Proc. 5th Berkeley Sympos. Math. Statist. and Prob., Vol. II, Univ. California Press, Berkeley, Calif., 1967 Google Scholar, pp. 311–320.
[293] F., Spitzer, Principles of random walk, second ed., Springer-Verlag, New York, 1976 Google Scholar, Graduate Texts in Mathematics, Vol. 34.
[294] A., Stannard and P., Coles, Random-walk statistics and the spherical harmonic representation of cosmic microwave background maps, Mon. Not. Roy. Astron. Soc. 364 (2005 Google Scholar), no. 3, 929–933.
[295] W. F., Stout, Almost sure convergence, Academic Press, 1974, Probability and Mathematical Statistics, Vol. 24 Google Scholar.
[296] D. W., Stroock, An introduction to Markov processes, Graduate Texts in Mathematics, vol. 230, Springer-Verlag, Berlin, 2005 Google Scholar.
[297] A., Sturm and J. M., Swart, Tightness of voter model interfaces, Electron. Commun. Probab. 13 (2008 Google Scholar), 165–174.
[298] R., Syski, Exit time from a positive quadrant for a two-dimensional Markov chain, Comm. Statist. Stochastic Model. 8 (1992 Google Scholar), no. 3, 375–395.
[299] G. J., Székely, On the asymptotic properties of diffusion processes, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 17 (1974 Google Scholar), 69–71 (1975).
[300] A.-S., Sznitman, Topics in random walks in random environment, School and Conference on Probability Theory, ICTP Lect. Notes, XVII, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2004 Google Scholar, pp. 203–266 (electronic).
[301] P., Tarrès, Vertex-reinforced random walk on Z eventually gets stuck on five points, Ann. Probab. 32 (2004 Google Scholar), no. 3B, 2650–2701.
[302] R. L., Tweedie, Sufficient conditions for ergodicity and recurrence of Markov chains on a general state space, Stochastic Processes Appl. 3 (1975 Google Scholar), no. 4, 385–403.
[303] R. L., Tweedie, Sufficient conditions for regularity, recurrence and ergodicity of Markov processes, Math. Proc. Cambridge Philos. Soc. 78 (1975 Google Scholar), 125–136.
[304] R. L., Tweedie, Criteria for classifying general Markov chains, Adv. in Appl. Probab. 8 (1976 Google Scholar), no. 4, 737–771.
[305] R. L., Tweedie, Criteria for ergodicity, exponential ergodicity and strong ergodicity of Markov processes, J. Appl. Probab. 18 (1981 Google Scholar), no. 1, 122–130.
[306] R. van der, Hofstad and M., Holmes, Monotonicity for excited random walk in high dimensions, Probab. Theory Related Fields 147 (2010 Google Scholar), no. 1–2, 333–348.
[307] Y., Velenik, Localization and delocalization of random interfaces, Probab. Surv. 3 (2006 Google Scholar), 112–169.
[308] A. Yu., Veretennikov, On the rate of convergence for infinite server Erlang– Sevastyanov's problem, Queueing Syst. 76 (2014 Google Scholar), no. 2, 181–203.
[309] A. Yu., Veretennikov and G. A., Zverkina, Simple proof of Dynkin's formula for single-server systems and polynomial convergence rates, Markov Process. Related Field. 20 (2014 Google Scholar), no. 3, 479–504.
[310] M., Voit, Central limit theorems for random walks on N that are associated with orthogonal polynomials, J. Multivariate Anal. 34 (1990 Google Scholar), no. 2, 290–322.
[311] M., Voit, Strong laws of large numbers for random walks associated with a class of one-dimensional convolution structures, Monatsh. Math. 113 (1992 Google Scholar), no. 1, 59–74.
[312] S., Volkov, Vertex-reinforced random walk on arbitrary graphs, Ann. Probab. 29 (2001 Google Scholar), no. 1, 66–91.
[313] W., Wagner, Explosion phenomena in stochastic coagulation-fragmentation models, Ann. Appl. Probab. 15 (2005 Google Scholar), no. 3, 2081–2112.
[314] G., H.Weiss, Random walks and their applications, Amer. Sci. 71 (1983 Google Scholar), 65–71.
[315] G. H., Weiss and R. J., Rubin, Random walks: theory and selected applications, Adv. Chem. Phys. 52 (1983 Google Scholar), 363–505.
[316] W. M., Wonham, Liapunov criteria for weak stochastic stability, J. Differential Equation. 2 (1966 Google Scholar), 195–207.
[317] W. M., Wonham, A Liapunov method for the estimation of statistical averages, J. Differential Equation. 2 (1966 Google Scholar), 365–377.
[318] S., Zachary, On two-dimensional Markov chains in the positive quadrant with partial spatial homogeneity, Markov Process. Related Field. 1 (1995 Google Scholar), no. 2, 267–280.
[319] O., Zeitouni, Random walks in random environment, Lectures on probability theory and statistics, Lecture Notes in Math., vol. 1837, Springer, Berlin, 2004 Google Scholar, pp. 189–312.
[320] O., Zeitouni, Random walks in random environments, J. Phys. A 39 (2006 Google Scholar), no. 40, R433–R464.
[321] M. P. W., Zerner, Recurrence and transience of excited random walks on Zd and strips, Electron. Comm. Probab. 11 (2006 Google Scholar), 118–128 (electronic).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.