from Part III - Next Generation Challenges and Questions
Published online by Cambridge University Press: 05 June 2016
Introduction
During the last two decades, evolutionary developmental biology (evo-devo) has established itself as an important new branch for the study of evolutionary patterns and processes. Evo-devo can provide insight into the mechanistic changes that result in evolutionary novelty. Besides the many successful applications of evo-devo in animals and plants there is, however, a need for a better integration of evo-devo with population genetics and evolutionary ecology (Sommer 2009). Work at the interface between these disciplines requires an interdisciplinary toolkit and can bring different research traditions closer together. Here, I argue that NGS approaches will play a pivotal role in bridging the different research traditions in contemporary evolutionary biology.
Evolutionary developmental biology: the missing link between development and evolution
Evolution is the change of the heritable characteristics of organisms over time. All biological systems evolve and they do so continuously, making evolution one of the most important properties of biology. The relationship between evolution and the ‘rest of biology’ is twofold: on the one hand, everything in biology has to be considered in the light of evolution (Dobzhansky 1964). On the other hand, our understanding about evolution and the historical processes associated with it depend heavily on the general knowledge available within the biological sciences. Therefore, progress in biology will always affect our understanding of evolutionary patterns and processes.
One recent example that indicates how evolutionary theory depends on progress in the biological sciences is the case of developmental biology. Developmental biology is a classical discipline within biology that has always been at the forefront of research and teaching, simply because all multicellular organisms go through ontogenesis. Until the 1980s, developmental biology was largely a descriptive discipline with a strong focus on cellular and histological mechanisms rather than genes (Amundson 2005). This has changed tremendously with the application of genetic tools and the establishment of selected model organisms. Initiated in the fruit fly Drosophila melanogaster, embryonic development, and in particular segmentation, was dissected with a careful genetic analysis aiming for the identification of genes involved in the segmentation process (Nüsslein-Volhard 1995). Similar unbiased genetic approaches have also been used in the roundworm Caenorhabditis elegans and the flowering plant Arabidopsis thaliana, providing mechanistic insight into various developmental processes, all of which has resulted in textbook knowledge (e.g. Wolpert 2007).
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.