Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-06T09:38:54.467Z Has data issue: false hasContentIssue false

4 - Neuronal migration

from Section 1 - Making of the brain

Published online by Cambridge University Press:  01 March 2011

Hugo Lagercrantz
Affiliation:
Karolinska Institutet, Stockholm
M. A. Hanson
Affiliation:
Southampton General Hospital
Laura R. Ment
Affiliation:
Yale University, Connecticut
Donald M. Peebles
Affiliation:
University College London
Get access

Summary

Introduction

During brain development, neocortical neurons derive from the primitive neuroepithelium and migrate to their appropriate position in the cerebral mantle, including the cortical plate (or prospective neocortex). In humans, neurons destined to the neocortex migrate mainly between the twelfth and the twenty-fourth week of gestation. In rodents, this developmental period/ontogenic step occurs roughly between embryonic day 12 (the gestation period is about 20 days in these species) and the first postnatal days. The first postmitotic neurons migrate to form a subpial pre-plate or primitive plexiform zone (for a review, see Marin-Padilla,1998) (Fig. 4.1, p. 56). Subsequently produced neurons, which will form the cortical plate, migrate into the pre-plate and divide it into the superficial molecular layer (synonym layer I, marginal zone containing Cajal-Retzius neurons) and the deep subplate (synonym cortical layer VIb). Schematically, successive waves of migratory neurons pass the subplate neurons and end their migratory pathway below layer I. These migrating neurons form successively the cortical layers VIa, V, IV, II, and II, following the inside-out pattern of cortical ontogenesis discovered by the pioneering autoradiographic study of Angevine and Sidman (1961).

Migration pathways and radial glia

A central hypothesis of current developmental neurobiology (for a review, see Rakic,1988) is that migrating neurons find their way from the germinative zone to the cortical plate by climbing along the radially ascending processes of specialized radial glial cells, a finding reported by Rakic (1971).

Type
Chapter
Information
The Newborn Brain
Neuroscience and Clinical Applications
, pp. 55 - 70
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alcantara, S., Pozas, E., Ibanez, C. F., et al. (2005). BDNF-modulated spatial organization of Cajal-Retzius and GABAergic neurons in the marginal zone plays a role in the development of cortical organization. Cerebral Cortex, 16, 487–99.CrossRefGoogle Scholar
Allias, F., Buenerd, A., Bouvier, R., et al. (2004). The spectrum of type III lissencephaly: a clinicopathological update. Fetal and Pediatric Pathology, 23, 305–17.CrossRefGoogle ScholarPubMed
Anderson, S. A., Eisenstat, D. D., Shi, L., et al. (1997). Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes. Science, 278, 474–6.CrossRefGoogle ScholarPubMed
Angevine, J. B. & Sidman, R. L. (1961). Autoradiographic study of cell migration during histogenesis of cerebral cortex in the mouse. Nature, 192, 766–8.CrossRefGoogle ScholarPubMed
Anton, E. S., Kreidberg, J. A., & Rakic, P. (1999). Distinct functions of alpha3 and alpha(v) integrin receptors in neuronal migration and laminar organization of the cerebral cortex. Neuron, 22, 277–89.CrossRefGoogle ScholarPubMed
Arimatsu, Y., Miyamoto, M., Nihonmatsu, I., et al. (1992). Early regional specification for a molecular neuronal phenotype in the rat neocortex. Proceedings of the National Academy of Sciences of the U S A, 89, 8879–83.CrossRefGoogle ScholarPubMed
Austin, C. P. & Cepko, C. L. (1990). Cellular migration patterns in the developing mouse cerebral cortex. Development, 110, 713–32.Google ScholarPubMed
Baes, M., Gressens, P., Baumgart, E., et al. (1997). A mouse model for Zellweger syndrome. Nature Genetics, 17, 49–57.CrossRefGoogle ScholarPubMed
Barkovich, A. J., Kuzniecky, R. I., & Dobyns, W. B. (2001). Radiologic classification of malformations of cortical development. Current Opinion in Neurology, 14, 145–9.CrossRefGoogle ScholarPubMed
Barkovich, A. J., Kuzniecky, R. I., Jackson, G. D., et al. (2005). A developmental and genetic classification for malformations of cortical development. Neurology, 65, 1873–87.CrossRefGoogle ScholarPubMed
Behar, T. N., Li, Y. X., Tran, H. T., et al. (1996). GABA stimulates chemotaxis and chemokinesis of embryonic cortical neurons via calcium-dependent mechanisms. Journal of Neuroscience, 16, 1808–18.CrossRefGoogle ScholarPubMed
Behar, T. N., Schaffner, A. E., Scott, C. A., et al. (1998). Differential response of cortical plate and ventricular zone cells to GABA as a migration stimulus. Journal of Neuroscience, 18, 6378–87.CrossRefGoogle ScholarPubMed
Behar, T. N., Scott, C. A., Greene, C. L., et al. (1999). Glutamate acting at NMDA receptors stimulates embryonic cortical neuronal migration. Journal of Neuroscience, 19, 4449–61.CrossRefGoogle ScholarPubMed
Behar, T. N., Smith, S. V., Kennedy, R. T., et al. (2001). GABA(B) receptors mediate motility signals for migrating embryonic cortical cells. Cerebral Cortex, 11, 744–53.CrossRefGoogle ScholarPubMed
Bellion, A., Baudoin, J. P., Alvarez, C., et al. (2005). Nucleokinesis in tangentially migrating neurons comprises two alternating phases: forward migration of the Golgi/centrosome associated with centrosome splitting and myosin contraction at the rear. Journal of Neuroscience, 25, 5691–9.CrossRefGoogle ScholarPubMed
Beltran-Valero de Bernabe, D., Currier, S., Steinbrecher, A., et al. (2002). Mutations in the O-mannosyltransferase gene POMT1 give rise to the severe neuronal migration disorder Walker–Warburg syndrome. American Journal of Human Genetics, 71, 1033–43.CrossRefGoogle ScholarPubMed
Beltran-Valero de Bernabe, D., Voit, T., Longman, C., et al. (2004). Mutations in the FKRP gene can cause muscle-eye-brain disease and Walker–Warburg syndrome. Journal of Medical Genetics, 41, e61.CrossRefGoogle ScholarPubMed
Berry-Kravis, E. & Israel, J. (1994). X-linked pachygyria and agenesis of the corpus callosum: evidence for an X chromosome lissencephaly locus. Annals of Neurology, 36, 229–33.CrossRefGoogle Scholar
Bielas, S., Higginbotham, H., Koizumi, H., et al. (2004). Cortical neuronal migration mutants suggest separate but intersecting pathways. Annual Review of Cell and Developmental Biology, 20, 593–618.CrossRefGoogle ScholarPubMed
Brunstrom, J. E. & Pearlman, A. L. (2000). Growth factor influences on the production and migration of cortical neurons. Results and Problems in Cell Differentiation, 30, 189–215.CrossRefGoogle ScholarPubMed
Chen, Y., Beffert, U., Ertunc, M., et al. (2005). Reelin modulates NMDA receptor activity in cortical neurons. Journal of Neuroscience, 25, 8209–16.CrossRefGoogle ScholarPubMed
Chiyonobu, T., Sasaki, J., Nagai, Y., et al. (2005). Effects of fukutin deficiency in the developing mouse brain. Neuromuscular Disorders, 15, 416–26.CrossRefGoogle ScholarPubMed
Crandall, J. E., Hackett, H. E., Tobet, S. A., et al. (2004). Cocaine exposure decreases GABA neuron migration from the ganglionic eminence to the cerebral cortex in embryonic mice. Cerebral Cortex, 14, 665–75.CrossRefGoogle ScholarPubMed
Cuevas, E., Auso, E., Telefont, M., et al. (2005). Transient maternal hypothyroxinemia at onset of corticogenesis alters tangential migration of medial ganglionic eminence-derived neurons. European Journal of Neuroscience, 22, 541–51.CrossRefGoogle ScholarPubMed
Culican, S. M., Baumrind, N. L., Yamamoto, M., et al. (1990). Cortical radial glia: identification in tissue culture and evidence for their transformation to astrocytes. Journal of Neuroscience, 10, 684–92.CrossRefGoogle ScholarPubMed
des Portes, V., Pinard, J. M., Billuart, P., et al. (1998). A novel CNS gene required for neuronal migration and involved in X-linked subcortical laminar heterotopia and lissencephaly syndrome. Cell, 92, 51–61.CrossRefGoogle ScholarPubMed
Dobyns, W. B. & Truwit, C. L. (1995). Lissencephaly and other malformations of cortical development: 1995 update. Neuropediatrics, 26, 132–47.CrossRefGoogle ScholarPubMed
Encha Razavi, F., Larroche, J. C., Roume, J., et al. (1996). Lethal familial fetal akinesia sequence (FAS) with distinct neuropathological pattern: type III lissencephaly syndrome. American Journal of Medical Genetics, 62, 16–22.3.0.CO;2-U>CrossRefGoogle ScholarPubMed
Ferri, R. T. & Levitt, P. (1993). Cerebral cortical progenitors are fated to produce region-specific neuronal populations. Cerebral Cortex, 3, 187–98.CrossRefGoogle ScholarPubMed
Fox, J. W., Lamperti, E. D., Ekşioğlu, Y. Z., et al. (1998). Mutations in filamin 1 prevent migration of cerebral cortical neurons in human periventricular heterotopia. Neuron, 21, 1315–25.CrossRefGoogle ScholarPubMed
Friocourt, G., Kappeler, C., Saillour, Y., et al. (2005). Doublecortin interacts with the ubiquitin protease DFFRX, which associates with microtubules in neuronal processes. Molecular and Cellular Neurosciences, 28, 153–64.CrossRefGoogle ScholarPubMed
Gadisseux, J. F. & Evrard, P. (1985). Glial-neuronal relationship in the developing central nervous system. A histochemical-electron microscope study of radial glial cell particulate glycogen in normal and reeler mice and the human fetus. Developmental Neuroscience, 7, 12–32.CrossRefGoogle ScholarPubMed
Gdalyahu, A., Ghosh, I., Levy, T., et al. (2004). DCX, a new mediator of the JNK pathway. EMBO Journal, 23, 823–32.CrossRefGoogle ScholarPubMed
Gleeson, J. G. & Walsh, C. A. (2000). Neuronal migration disorders: from genetic diseases to developmental mechanisms. Trends in Neurosciences, 23, 352–9.CrossRefGoogle ScholarPubMed
Gonzalez-Billault, C., Del Rio, J. A., Urena, J. M., et al. (2005). A role of MAP1B in Reelin-dependent neuronal migration. Cerebral Cortex, 15, 1134–45.CrossRefGoogle ScholarPubMed
Götz, M., Stoykova, A., & Gruss, P. (1998). Pax6 controls radial glia differentiation in the cerebral cortex. Neuron, 21, 1031–44.CrossRefGoogle ScholarPubMed
Gressens, P. & Evrard, P. (1993). The glial fascicle: an ontogenic and phylogenic unit guiding, supplying and distributing mammalian cortical neurons. Brain Research Developmental Brain Research, 76, 272–7.CrossRefGoogle ScholarPubMed
Gressens, P., Gofflot, F., Maele-Fabry, G., et al. (1992a). Early neurogenesis and teratogenesis in whole mouse embryo cultures. Histochemical, immunocytological and ultrastructural study of the premigratory neuronal-glial units in normal mouse embryo and in mouse embryos influenced by cocaine and retinoic acid. Journal of Neuropathology and Experimental Neurology, 51, 206–19.CrossRefGoogle Scholar
Gressens, P., Kosofsky, B. E., & Evrard, P. (1992b). Cocaine-induced disturbances of corticogenesis in the developing murine brain. Neuroscience Letters, 140, 113–16.CrossRefGoogle ScholarPubMed
Gressens, P., Lammens, M., Piccard, J. J., et al. (1992c). Ethanol-induced disturbances of gliogenesis and neuronogenesis in the developing murine brain: an in vitro and in vivo immunohistochemical and ultrastructural study. Alcohol and Alcoholism, 27, 219–26.Google Scholar
Guerri, C., Pascual, M., & Renau-Piqueras, J. (2001). Glia and fetal alcohol syndrome. Neurotoxicology, 22, 593–9.CrossRefGoogle ScholarPubMed
Hand, R., Bortone, D., Mattar, P., et al. (2005). Phosphorylation of neurogenin2 specifies the migration properties and the dendritic morphology of pyramidal neurons in the neocortex. Neuron, 48, 45–62.CrossRefGoogle ScholarPubMed
Hatten, M. E. (2005). LIS-less neurons don't even make it to the starting gate. Journal of Cell Biology, 170, 867–71.CrossRefGoogle ScholarPubMed
Janssen, A., Gressens, P., Grabenbauer, M., et al. (2003). Neuronal migration depends on intact peroxisomal function in brain and in extraneuronal tissues. Journal of Neuroscience, 23, 9732–41.CrossRefGoogle ScholarPubMed
Jimenez-Mateos, E. M., Wandosell, F., Reiner, O., et al. (2005). Binding of microtubule-associated protein 1B to LIS1 affects the interaction between dynein and LIS1. Biochemical Journal, 389(Pt 2), 333–41.CrossRefGoogle ScholarPubMed
Kadhim, H. J., Gadisseux, J. F., & Evrard, P. (1988). Topographical and cytological evolution of the glial phase during prenatal development of the human brain: histochemical and electron microscopic study. Journal of Neuropathology and Experimental Neurology, 47, 166–88.CrossRefGoogle ScholarPubMed
Kaindl, A. M., Asimiadou, S., Manthey, D., et al. (2006). Antiepileptic drugs and the developing brain. Cellular and Molecular Life Sciences, 63, 399–413.CrossRefGoogle ScholarPubMed
Kato, M. & Dobyns, W. B. (2005). X-linked lissencephaly with abnormal genitalia as a tangential migration disorder causing intractable epilepsy: proposal for a new term, interneuronopathy. Journal of Child Neurology, 20, 392–7.CrossRefGoogle ScholarPubMed
Keays, D. A., Tian, G., Poirier, K., et al. (2007). Mutations in alpha-tubulin cause abnormal neuronal migration in mice and lissencephaly in humans. Cell, 128, 45–57.CrossRefGoogle ScholarPubMed
Kobayashi, K., Nakahori, Y., Miyake, M., et al. (1998). An ancient retrotransposal insertion causes Fukuyama-type congenital muscular dystrophy. Nature, 394, 388–92.CrossRefGoogle ScholarPubMed
Kriegstein, A. R. & Noctor, S. C. (2004). Patterns of neuronal migration in the embryonic cortex. Trends in Neurosciences, 27, 392–9.CrossRefGoogle ScholarPubMed
Krysko, O., Hulshagen, L., Janssen, A., et al. (2007). Neocortical and cerebellar developmental abnormalities in conditions of selective elimination of peroxisomes from brain or from liver. Journal of Neuroscience Research, 85, 58–72.CrossRefGoogle ScholarPubMed
Kuban, K. C. & Gilles, F. H. (1985). Human telencephalic angiogenesis. Annals of Neurology, 17, 539–48.CrossRefGoogle ScholarPubMed
Kuwano, A., Ledbetter, S. A., Dobyns, W. B., et al. (1991). Detection of deletions and cryptic translocations in Miller-Dieker syndrome by in situ hybridization. American Journal of Human Genetics, 49, 707–14.Google ScholarPubMed
Lidow, M. S. (1998). Nonhuman primate model of the effect of prenatal cocaine exposure on cerebral cortical development. Annals of the New York Academy of Sciences, 846, 182–93.CrossRefGoogle ScholarPubMed
Lyon, G., Raymond, G., Mogami, K., et al. (1993). Disorder of cerebellar foliation in Walker's lissencephaly and Neu–Laxova syndrome. Journal of Neuropathology and Experimental Neurology, 52, 633–9.CrossRefGoogle ScholarPubMed
Marin-Padilla, M. (1998). Cajal-Retzius cells and the development of the neocortex. Trends in Neurosciences, 21, 64–71.CrossRefGoogle ScholarPubMed
Marret, S., Gressens, P., & Evrard, P. (1996). Arrest of neuronal migration by excitatory amino acids in hamster developing brain. Proceedings of the National Academy of Sciences of the U S A, 93, 15463–8.CrossRefGoogle ScholarPubMed
Martin, P. T. (2005). The dystroglycanopathies: the new disorders of O-linked glycosylation. Seminars in Pediatric Neurology, 12, 152–8.CrossRefGoogle ScholarPubMed
Martinez-Galan, J. R., Escobar del Rey, F., Morreale de Escobar, G., et al. (2004). Hypothyroidism alters the development of radial glial cells in the term fetal and postnatal neocortex of the rat. Brain Research Developmental Brain Research, 153, 109–14.CrossRefGoogle ScholarPubMed
McConnell, S. K. & Kaznowski, C. E. (1991). Cell cycle dependence of laminar determination in developing neocortex. Science, 254, 282–5.CrossRefGoogle ScholarPubMed
McManus, M. F., Nasrallah, I. M., Pancoast, M. M., et al. (2004). Lis1 is necessary for normal non-radial migration of inhibitory interneurons. American Journal of Pathology, 165, 775–84.CrossRefGoogle ScholarPubMed
Miyata, H., Chute, D. J., Fink, J., et al. (2004). Lissencephaly with agenesis of corpus callosum and rudimentary dysplastic cerebellum: a subtype of lissencephaly with cerebellar hypoplasia. Acta Neuropathologica, 107, 69–81.CrossRefGoogle ScholarPubMed
Nagano, T., Morikubo, S., & Sato, M. (2004). Filamin A and FILIP (Filamin A-Interacting Protein) regulate cell polarity and motility in neocortical subventricular and intermediate zones during radial migration. Journal of Neuroscience, 24, 9648–57.CrossRefGoogle ScholarPubMed
Poirier, K., Esch, H., Friocourt, G., et al. (2004). Neuroanatomical distribution of ARX in brain and its localisation in GABAergic neurons. Brain Research Developmental Brain Research, 122, 35–46.CrossRefGoogle ScholarPubMed
Rakic, P. (1971). Guidance of neurons migrating to the fetal monkey neocortex. Brain Research, 33, 471–6.CrossRefGoogle ScholarPubMed
Rakic, P. (1988). Specification of cerebral cortical areas. Science, 241, 170–6.CrossRefGoogle ScholarPubMed
Rakic, P., Knyihar-Csillik, E., & Csillik, B. (1996). Polarity of microtubule assemblies during neuronal cell migration. Proceedings of the National Academy of Sciences of the U S A, 93, 9218–22.CrossRefGoogle ScholarPubMed
Ramer, J. C., Lin, A. E., & Dobyns, W. B. (1995). Previously apparently undescribed syndrome: shallow orbits, ptosis, coloboma, trigonocephaly, gyral malformations, and mental and growth retardation. American Journal of Medical Genetics, 57, 403–9.CrossRefGoogle ScholarPubMed
Reiner, O., Carrozzo, R., Shen, Y., et al. (1993). Isolation of a Miller-Dieker lissencephaly gene containing G protein beta-subunit-like repeats. Nature, 364, 717–21.CrossRefGoogle ScholarPubMed
Reiprich, P., Kilb, W., & Luhmann, H. J. (2005). Neonatal NMDA receptor blockade disturbs neuronal migration in rat somatosensory cortex in vivo. Cerebral Cortex, 15, 349–58.CrossRefGoogle ScholarPubMed
Robertson, S. P. (2005). Filamin A: phenotypic diversity. Current Opinion in Genetics and Development, 15, 301–7.CrossRefGoogle ScholarPubMed
Rollins, N., Reyes, T., & Chia, J. (2005). Diffusion tensor imaging in lissencephaly. AJNR American Journal of Neuroradiology, 26, 1583–6.Google ScholarPubMed
Ross, M. E., Swanson, K., & Dobyns, W. B. (2001). Lissencephaly with cerebellar hypoplasia (LCH): a heterogeneous group of cortical malformations. Neuropediatrics, 32, 256–63.CrossRefGoogle ScholarPubMed
Sanada, K., Gupta, A., & Tsai, L. H. (2004). Disabled-1-regulated adhesion of migrating neurons to radial glial fiber contributes to neuronal positioning during early corticogenesis. Neuron, 42, 197–211.CrossRefGoogle ScholarPubMed
Sarnat, H. B. & Flores-Sarnat, L. (2003). Etiological classification of CNS malformations: integration of molecular genetic and morphological criteria. Epileptic Disorders, 5 (Suppl. 2), S35–43.Google ScholarPubMed
Schaar, B. T. & McConnell, S. K. (2005). Cytoskeletal coordination during neuronal migration. Proceedings of the National Academy of Sciences of the U S A, 102, 13652–7.CrossRefGoogle ScholarPubMed
Schmid, R. S., Shelton, S., Stanco, A., et al. (2004). alpha3beta1 integrin modulates neuronal migration and placement during early stages of cerebral cortical development. Development, 131, 6023–31.CrossRefGoogle ScholarPubMed
Seidahmed, M. Z., Sunada, Y., Ozo, C. O., et al. (1996). Lethal congenital muscular dystrophy in two sibs with arthrogryposis multiplex: new entity or variant of cobblestone lissencephaly syndrome?Neuropediatrics, 27, 305–10.CrossRefGoogle ScholarPubMed
Tabuchi, S., Kume, K., Aihara, M., et al. (1997). Lipid mediators modulate NMDA receptor currents in a Xenopus oocyte expression system. Neuroscience Letters, 237, 13–16.CrossRefGoogle Scholar
Tarricone, C., Perrina, F., Monzani, S., et al. (2004). Coupling PAF signaling to dynein regulation: structure of LIS1 in complex with PAF-acetylhydrolase. Neuron, 44, 809–21.Google ScholarPubMed
Rahe, B. S., Majoie, C. B., Akkerman, E. M., et al. (2004). Peroxisomal biogenesis disorder: comparison of conventional MR imaging with diffusion-weighted and diffusion-tensor imaging findings. AJNR American Journal of Neuroradiology, 25, 1022–7.Google ScholarPubMed
Tsai, J. W., Chen, Y., Kriegstein, A. R., et al. (2005). LIS1 RNA interference blocks neural stem cell division, morphogenesis, and motility at multiple stages. Journal of Cell Biology, 170, 935–45.CrossRefGoogle ScholarPubMed
Tsukada, M., Prokscha, A., Ungewickell, E., et al. (2005). Doublecortin association with actin filaments is regulated by neurabin II. Journal of Biology Chemistry, 280, 11361–8.CrossRefGoogle ScholarPubMed
Reeuwijk, J., Janssen, M., Elzen, C., et al. (2005). POMT2 mutations cause alpha-dystroglycan hypoglycosylation and Walker–Warburg syndrome. Journal of Medical Genetics, 42, 907–12.CrossRefGoogle ScholarPubMed
Reeuwijk, J., Maugenre, S., Elzen, C., et al. (2006). The expanding phenotype of POMT1 mutations: from Walker–Warburg syndrome to congenital muscular dystrophy, microcephaly, and mental retardation. Human Mutation, 27, 453–9.CrossRefGoogle ScholarPubMed
Willer, T., Prados, B., Falcon-Perez, J. M., et al. (2004). Targeted disruption of the Walker–Warburg syndrome gene Pomt1 in mouse results in embryonic lethality. Proceedings of the National Academy of Sciences of the U S A, 101, 14126–31.CrossRefGoogle ScholarPubMed
Yoshida, A., Kobayashi, K., Manya, H., et al. (2001). Muscular dystrophy and neuronal migration disorder caused by mutations in a glycosyltransferase, POMGnT1. Developmental Cell, 1, 717–24.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×