Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-20T01:34:48.534Z Has data issue: false hasContentIssue false

3 - Holoprosencephaly and microcephaly vera: perturbations of proliferation

from Section 1 - Making of the brain

Published online by Cambridge University Press:  01 March 2011

Hugo Lagercrantz
Affiliation:
Karolinska Institutet, Stockholm
M. A. Hanson
Affiliation:
Southampton General Hospital
Laura R. Ment
Affiliation:
Yale University, Connecticut
Donald M. Peebles
Affiliation:
University College London
Get access

Summary

Malformations of the developing nervous system may arise from disorders primarily affecting the nervous system or arise incidentally as part of multisystemic disorders. More than a century of study preceding the modern era of cellular and molecular biology has established a schema for the basic histogenetic sequences of development that are disrupted by the molecular and cellular biological perturbations which give rise to the most well-known developmental malformations of the brain (Sidman & Rakic, 1982; Caviness et al., 2008). These encompass histogenetic processes ranging from cell proliferation to cellular events involved in elementary pattern formation including migration and postmigratory rearrangements, to the processes of growth and differentiation, including the winnowing of “excess” cells and cell processes. The perturbations arising from genetic mutations are among the most extreme in their consequences for development of the nervous system and for adaptation or even survival of the organism. They have, however, offered penetrating insights into the nature and mechanisms through which genetic regulation governs the cellular and molecular biological processes through which development proceeds.

Our focus over the years has been the proliferative process, the earliest step in the histogenetic sequence. In particular, we have focused on regulation of proliferative mechanisms that give rise to the vertebrate neocortex, with the mouse being our experimental model. Over time, this work has served to inform our parallel interest in disorders of the developing human forebrain as encountered in the clinic.

Type
Chapter
Information
The Newborn Brain
Neuroscience and Clinical Applications
, pp. 37 - 54
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ang, X. L. & Harper, J. W. (2004). Interwoven ubiquitination oscillators and control of cell cycle transitions. Science's STKE: Signal Transduction Knowledge Environment, e31.
Angevine, J. B. & Sidman, R. L. (1961). Autoradiographic study of cell migration during histogenesis of the cerebral cortex in the mouse. Nature, 192, 766–8.CrossRefGoogle ScholarPubMed
Bayer, S. A. & Altman, J. (1991). Neocortical Development. New York: Raven Press.Google Scholar
Bhardwaj, R. D., Curtis, M. A., Spalding, K. L., et al. (2006). Neocortical neurogenesis in humans is restricted to development. Proceedings of the National Academy of Sciences of the U S A, 103, 12564–8.CrossRefGoogle Scholar
Bisconte, J.-C. & Marty, R. (1975). Analyse chronoarchitectonique du cerveau de rat par radioautographie. I. Histogenese du telencephale. Journal für Hirnforschung, 16, 55–74.Google Scholar
Borriello, A., Cucciolla, V., Criscuolo, M., et al. (2006). Retinoic acid induces p27Kip1 nuclear accumulation by modulating its phosphorylation. Cancer Research, 66, 4240–8.CrossRefGoogle ScholarPubMed
Breunig, J. J., Silbereis, J., Vaccarino, F. M., et al. (2007). Notch regulates cell fate and dendrite morphology of newborn neurons in the postnatal dentate gyrus. Proceedings of the National Academy of Sciences of the U S A, 104, 20558–63.CrossRefGoogle ScholarPubMed
Bullen, P. J., Rankin, J. M., & Robson, S. C. (2001). Investigation of the epidemiology and prenatal diagnosis of holoprosencephaly in the North of England. American Journal of Obstetrics and Gynecology, 184, 1256–62.CrossRefGoogle ScholarPubMed
Cai, L., Morrow, E. M., & Cepko, C. L. (2000). Misexpression of basic helix-loop-helix genes in the murine cerebral cortex affects cell fate choices and neuronal survival. Development, 127, 3021–30.Google ScholarPubMed
Cai, L., Hayes, N. L., Takahashi, T., et al. (2002). Size distribution of retrovirally marked lineages matches prediction from population measurements of cell cycle behavior. Journal of Neuroscience Research, 69, 731–44.CrossRefGoogle ScholarPubMed
Casaccia-Bonnefil, P., Tikoo, R., Kiyokawa, H., et al. (1997). Oligodendrocyte precursor differentiation is perturbed in the absence of the cyclin-dependent kinase inhibitor p27Kip1. Genes and Development, 11, 2335–46.CrossRefGoogle ScholarPubMed
Casaccia-Bonnefil, P., Hardy, R. J., Teng, K. K., et al. (1999). Loss of p27Kip1 function results in increased proliferative capacity of oligodendrocyte progenitors but unaltered timing of differentiation. Development, 126, 4027–37.Google Scholar
Caviness, V. (1982). Neocortical histogenesis in normal and reeler mice: a developmental study based upon [3H]thymidine autoradiography. Brain Research Developmental Brain Research, 4, 293–302.CrossRefGoogle Scholar
Caviness, V., Takahashi, T., & Nowakowski, R. (1995). Numbers, time and neocortical neuronogenesis: a general developmental and evolutionary model. Trends in Neurosciences, 18, 379–83.CrossRefGoogle ScholarPubMed
Caviness, V., Takahashi, T., & Nowakowski, R. (2000). Neuronogenesis and the early events of neocortical histogenesis. In Development of the Neocortex, eds. Goffinet, A. & Rakic, P.. Berlin: Springer-Verlag, pp. 107–43.Google Scholar
Caviness, V. S. (1975). Architectonic map of neocortex of the normal mouse. Journal of Comparative Neurology, 164, 247–63.CrossRefGoogle ScholarPubMed
Caviness, V. S., Bhide, P., & Nowakowski, R. (2008). Histogenetic processes leading to the laminated neocortex: migration only a part of the story. Developmental Neuroscience, 30, 82–95.CrossRefGoogle Scholar
Cohen, M. M. (1989). Perspectives on holoprosencephaly: Part III. Spectra, distinctions, continuities, and discontinuities. American Journal of Medical Genetics, 34, 271–88.CrossRefGoogle ScholarPubMed
Cohen, M. M. (2001). Problems in the definition of holoprosencephaly. American Journal of Medical Genetics, 103, 183–7.CrossRefGoogle ScholarPubMed
Cohen, M. M. & Shiota, K. (2002). Teratogenesis of holoprosencephaly. American Journal of Medical Genetics, 109, 1–15.CrossRefGoogle ScholarPubMed
Cunningham, D. (1895). The Brain of the Microcephalic Idiot. London: The Royal Dublin Society, Williams and Norgate.Google Scholar
Delalle, I., Takahash, T., Nowakowski, R., et al. (1999). Cyclin E–p27 opposition and regulation of the G1 phase of the cell cycle in the murine neocortical PVE: a quantitative analysis of mRNA in situ hybridization. Cerebral Cortex, 9, 824–32.CrossRefGoogle ScholarPubMed
DeMyer, W. (1977). Holoprosencephaly (cyclopia-arhinencephaly). In Handbook of Clinical Neurology: Congenital Malformations of the Brain and Skull Part I, eds. Vinken, P. & Bruyn, G.. Amsterdam: North Holland, pp. 431–78.Google Scholar
DeMyer, W. & Zeman, W. (1963). Alobar holoprosencephaly (arhinencephaly) with median cleft lip and palate. Confinia Neurologica, 23, 1–36.CrossRefGoogle ScholarPubMed
Edlund, T. & Jessell, T. M. (1999). Progression from extrinsic to intrinsic signaling in cell fate specification: a view from the nervous system. Cell, 96, 211–24.CrossRefGoogle Scholar
Ferrell, J. E. (2002). Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability. Current Opinion in Cell Biology, 14, 140–8.CrossRefGoogle ScholarPubMed
Fox, J. W. & Walsh, C. A. (1999). Periventricular heterotopia and the genetics of neuronal migration in the cerebral cortex. American Journal of Human Genetics, 65, 19–24.CrossRefGoogle ScholarPubMed
Ganoth, D., Bornstein, G., Ko, T. K., et al. (2001). The cell-cycle regulatory protein Cks1 is required for SCF(Skp2)-mediated ubiquitinylation of p27. Nature Cell Biology, 3, 321–4.CrossRefGoogle ScholarPubMed
Grove, E. A. & Fukuchi-Shimogori, T. (2003). Generating the cerebral cortical area map. Annual Review of Neuroscience, 26, 355–80.CrossRefGoogle ScholarPubMed
Gurdon, J. B. & Bourillot, P. Y. (2001). Morphogen gradient interpretation. Nature, 413, 797–803.CrossRefGoogle ScholarPubMed
Hammarberg, C. (1895). Studien ueber Klinik und Pathologie der Idiotie nebst Untersuchungen ueber Die normale Anatomie der Hirnrinde. Upsala: Druck der Akademischen Buchdruckerei.Google Scholar
Jessell, T. M. & Melton, D. A. (1992). Diffusable factors in vertebrate embryonic induction. Cell, 68, 257–70.CrossRefGoogle Scholar
Kiyokawa, H., Kineman, R., Manova-Todorava, K., et al. (1996). Enhanced growth of mice lacking the cyclin-dependent kinase inhibitor function of p27Kip1. Cell, 85, 721–32.CrossRefGoogle Scholar
Kobori, J. A., Herrick, M. K., & Urich, H. (1987). Arhinencephaly. The spectrum of associated malformations. Brain, 110, 237–60.CrossRefGoogle ScholarPubMed
Kohn, K. W. (1999). Molecular interaction map of the mammalian cell cycle control and DNA repair systems. Molecular Biology of the Cell, 10, 2703–34.CrossRefGoogle ScholarPubMed
Kornack, D. R. & Rakic, P. (1999). Continuation of neurogenesis in the hippocampus of the adult macaque monkey. Proceedings of the National Academy of Sciences of the U S A, 96, 5768–73.CrossRefGoogle ScholarPubMed
Kouprina, N., Pavlicek, A., Collins, N. K., et al. (2005). The microcephaly ASPM gene is expressed in proliferating tissues and encodes for a mitotic spindle protein. Human Molecular Genetics, 14, 2155–65.CrossRefGoogle ScholarPubMed
Krubitzer, L. & Kaas, J. (2005). The evolution of the neocortex in mammals: how is phenotypic diversity generated?Current Opinion in Neurobiology, 15, 444–53.CrossRefGoogle Scholar
Kundrat, H. (1882). Arhinencepyhalie als typische Art von Missbildung. Graz: von Leuschner and Lubensky.Google Scholar
Leal, G. F., Roberts, E., Silva, E. O., et al. (2003). A novel locus for autosomal recessive primary microcephaly (MCPH6) maps to 13q12.2. Journal of Medical Genetics, 40, 540–2.CrossRefGoogle ScholarPubMed
Levine, D. N., Fisher, M. A., & Caviness, V. S. (1974). Porencephaly with microgyria: a pathologic study. Acta Neuropathologica, 29, 99–113.CrossRefGoogle ScholarPubMed
Matsunaga, E. & Shiota, K. (1977). Holoprosencephaly in human embryos: epidemiologic studies of 150 cases. Teratology, 16, 261–72.CrossRefGoogle ScholarPubMed
Miyama, S., Takahashi, T., Nowakowski, R. S., et al. (1997). A gradient in the duration of the G1 phase in the murine neocortical proliferative epithelium. Cerebral Cortex, 7, 678–89.CrossRefGoogle ScholarPubMed
Miyashita-Lin, E. M., Hevner, R., Wassarman, K. M., et al. (1999). Early neocortical regionalization in the absence of thalamic innervation. Science, 285, 906–9.CrossRefGoogle ScholarPubMed
Mochida, G. H. & Walsh, C. A. (2001). Molecular genetics of human microcephaly. Current Opinion in Neurology, 14, 151–6.CrossRefGoogle ScholarPubMed
Monuki, E. S., Porter, F. D., & Walsh, C. A. (2001). Patterning of the dorsal telencephalon and cerebral cortex by a roof plate-Lhx2 pathway. Neuron, 32, 591–604.CrossRefGoogle ScholarPubMed
Muenke, M. & Cohen, M. M. (2000). Genetic approaches to understanding brain development: holoprosencephaly as a model. Mental Retardation and Developmental Disabilities Research Review, 6, 15–21.3.0.CO;2-8>CrossRefGoogle Scholar
Muller, F. & O'Rahilly, R. (1988). The first appearance of the future cerebral hemispheres in the human embryo at stage 14. Anatomy and Embryology, 177, 495–511.CrossRefGoogle ScholarPubMed
Murata, K., Hattori, M., Hirai, N., et al. (2005). Hes1 directly controls cell proliferation through the transcriptional repression of p27Kip1. Molecular and Cellular Biology, 25, 4262–71.CrossRefGoogle ScholarPubMed
Nakayama, K., Ishida, N., Shirane, M., et al. (1996). Mice lacking p27Kip1 display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors. Cell, 85, 707–20.CrossRefGoogle ScholarPubMed
Noctor, S. C., Martinez-Cerdeno, V., Ivic, L., et al. (2004). Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nature Neuroscience, 7, 136–44.CrossRefGoogle ScholarPubMed
Noctor, S. C., Martinez-Cerdeno, V., & Kriegstein, A. R. (2007). Contribution of intermediate progenitor cells to cortical histogenesis. Archives of Neurology, 64, 639–42.CrossRefGoogle ScholarPubMed
Novak, B. & Tyson, J. J. (2004). A model for restriction point control of the mammalian cell cycle. Journal of Theoretical Biology, 230, 563–79.CrossRefGoogle ScholarPubMed
Nowakowski, R. S. (2006). Stable neuron numbers from cradle to grave. Proceedings of the National Academy of Sciences of the U S A, 103, 12219–20.CrossRefGoogle ScholarPubMed
Nowakowski, R. S. & Hayes, N. L. (1999). CNS development: an overview. Development and Psychopathology, 11, 395–417.CrossRefGoogle ScholarPubMed
Nowakowski, R. S., Caviness, V. S., Takahashi, T., et al. (2002). Population dynamics during cell proliferation and neuronogenesis in the developing murine neocortex. Results and Problems in Cell Differentiation, 39, 1–25.CrossRefGoogle ScholarPubMed
Pardee, A. B. (2004). Cell fates. In Cell Cycle and Growth Control: Biomolecular Regulation and Cancer, 2nd edn., eds. Stein, G. & Pardee, A. B.. Hobucken: John Wiley and Sons, pp. 3–15.Google Scholar
Puelles, L. & Rubenstein, J. L. (1993). Expression patterns of homeobox and other putative regulatory genes in the embryonic mouse forebrain suggest a neuromeric organization. Trends in Neurosciences, 16, 472–9.CrossRefGoogle ScholarPubMed
Rakic, P. (1988). Specification of cerebral cortical areas. Science, 241, 170–6.CrossRefGoogle ScholarPubMed
Rakic, P. (2007). The radial edifice of cortical architecture: from neuronal silhouettes to genetic engineering. Brain Research Reviews, 55, 204–19.CrossRefGoogle ScholarPubMed
Rash, B. G. & Grove, E. A. (2007). Patterning the dorsal telencephalon: a role for sonic hedgehog?Journal of Neuroscience, 27, 11595–603.CrossRefGoogle ScholarPubMed
Richards, G. D. (2006). Genetic, physiologic and ecogeographic factors contributing to variation in Homo sapiens: Homo floresiensis reconsidered. Journal of Evolutionary Biology, 19, 1744–67.CrossRefGoogle ScholarPubMed
Roessler, E. & Muenke, M. (2003). How a Hedgehog might see holoprosencephaly. Human Molecular Genetics, 12 Spec No 1, R15–25.CrossRefGoogle ScholarPubMed
Roessler, E., Du, Y. Z., Mullor, J. L., et al. (2003). Loss-of-function mutations in the human GLI2 gene are associated with pituitary anomalies and holoprosencephaly-like features. Proceedings of the National Academy of Sciences of the U S A, 100, 13424–9.CrossRefGoogle ScholarPubMed
Ross, S. E., Greenberg, M. E., & Stiles, C. D. (2003). Basic helix-loop-helix factors in cortical development. Neuron, 39, 13–25.CrossRefGoogle ScholarPubMed
Roy, K., Kuznicki, K., Wu, Q., et al. (2004). The Tlx gene regulates the timing of neurogenesis in the cortex. Journal of Neurosciences, 24, 8333–45.Google ScholarPubMed
Sarmento, L. M., Huang, H., Limon, A., et al. (2005). Notch1 modulates timing of G1-S progression by inducing SKP2 transcription and p27 Kip1 degradation. Journal of Experimental Medicine, 202, 157–68.CrossRefGoogle ScholarPubMed
Schuurmans, C. & Guillemot, F. (2002). Molecular mechanisms underlying cell fate specification in the developing telencephalon. Current Opinion in Neurobiology, 12, 26–34.CrossRefGoogle ScholarPubMed
Sheen, V. L., Feng, Y., Graham, D., et al. (2002). Filamin A and Filamin B are co-expressed within neurons during periods of neuronal migration and can physically interact. Human Molecular Genetics, 11, 2845–54.CrossRefGoogle ScholarPubMed
Sidman, R. L. & Rakic, P. (1982). Development of the human central nervous system. In: Histology and Histopathology of the Nervous System, eds. Haymaker, W. & Adams, R. D.. Springfield, IL: Charles C. Thomas, pp. 3–145.Google Scholar
Solecki, D. J., Liu, X. L., Tomoda, T., et al. (2001). Activated Notch2 signaling inhibits differentiation of cerebellar granule neuron precursors by maintaining proliferation. Neuron, 31, 557–68.CrossRefGoogle ScholarPubMed
Suter, B., Nowakowski, R. S., Bhide, P. G., et al. (2007). Navigating neocortical neurogenesis and neuronal specification: a positional information system encoded by neurogenetic gradients. Journal of Neuroscience, 27, 10777–84.CrossRefGoogle ScholarPubMed
Sutterluty, H., Chatelain, E., Marti, A., et al. (1999). p45SKP2 promotes p27Kip1 degradation and induces S phase in quiescent cells. Nature Cell Biology, 1, 207–14.CrossRefGoogle ScholarPubMed
Takahashi, T., Nowakowski, R. S., & Caviness, V. S. (1995). The cell cycle of the pseudostratified ventricular epithelium of the embryonic murine cerebral wall. Journal of Neuroscience, 15, 6046–57.CrossRefGoogle ScholarPubMed
Takahashi, T., Goto, T., Miyama, S., et al. (1999). Sequence of neuron origin and neocortical laminar fate: relation to cell cycle of origin in the developing murine cerebral wall. Journal of Neurosciences, 19, 10357–71.Google ScholarPubMed
Takahashi, T., Kinsman, S., Makris, N., et al. (2003). Semilobar holoprosencephaly with midline “seam”: a topologic and morphogenetic model based upon MRI analysis. Cerebral Cortex, 13, 1299–312.CrossRefGoogle ScholarPubMed
Takahashi, T. S., Kinsman, S., Makris, N., et al. (2004). Holoprosencephaly – topologic variations in a liveborn series: a general model based upon MRI analysis. Journal of Neurocytology, 33, 23–35.CrossRefGoogle Scholar
Tarui, T., Takahashi, T., Nowakowski, R. S., et al. (2005). Overexpression of p27 Kip 1, probability of cell cycle exit, and laminar destination of neocortical neurons. Cerebral Cortex, 15, 1343–55.CrossRefGoogle ScholarPubMed
Ubersax, J. A. & Ferrell, J. E. (2006). A noisy “Start” to the cell cycle. Molecular Systems Biology, 2, 2006–14.CrossRefGoogle Scholar
Walsh, C. & Cepko, C. L. (1990). Cell lineage and cell migration in the developing cerebral cortex. Experientia, 46, 940–7.CrossRefGoogle ScholarPubMed
Wolpert, L., Beddington, R., Brockes, J., et al. (1998). Principles of Development. London: Oxford University Press.Google Scholar
Wonders, C. P., Taylor, L., Welagen, J., et al. (2008). A spatial bias for the origins of interneuron subgroups within the medial ganglionic eminence. Developmental Biology, 314, 127–36.CrossRefGoogle ScholarPubMed
Woods, C. G. (2004). Human microcephaly. Current Opinion in Neurobiology, 14, 112–17.CrossRefGoogle ScholarPubMed
Woods, R. P., Freimer, N. B., Young, J. A., et al. (2006). Normal variants of Microcephalin and ASPM do not account for brain size variability. Human Molecular Genetics, 15, 2025–9.CrossRefGoogle Scholar
Yoon, K. & Gaiano, N. (2005). Notch signaling in the mammalian central nervous system: insights from mouse mutants. Nature Neuroscience, 8, 709–15.CrossRefGoogle ScholarPubMed
Yun, K., Mantani, A., Garel, S., et al. (2004). Id4 regulates neural progenitor proliferation and differentiation in vivo. Development, 131, 5441–8.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×