Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-22T03:44:13.425Z Has data issue: false hasContentIssue false

1 - Dispersion in stratified soils with fractal permeability distribution

Published online by Cambridge University Press:  07 May 2010

M. W. Kemblowski
Affiliation:
Department of Civil and Environmental Engineering, Utah State University, Logan, Utah,
Jet-Chau Wen
Affiliation:
Department of Civil and Environmental Engineering, Utah State University, Logan, Utah, USA
Zbigniew W. Kundzewicz
Affiliation:
World Meteorological Organization, Geneva
Get access

Summary

ABSTRACT Stochastic analysis of flow and transport in subsurface usually assumes that the soil permeability is a stationary, homogeneous stochastic process with a finite variance. Some field data suggest, however, that the permeability distributions may have a fractal character with long range correlations. It is of interest to investigate how the fractal character of permeability distribution influences the spreading process in porous media. Dispersion in perfectly stratified media with fractal distribution of permeability along the vertical was analyzed. Results were obtained for the transient and asymptotic longitudinal dispersivities. The results show that the macroscopic asymptotic dispersivity depends strongly on the fractal dimension of vertical permeability distribution. Macroscopic dispersivity was found to be problem-scale dependent in development and asymptotic phases.

INTRODUCTION

The impact of heterogeneities on flow and mass transport in groundwater has been investigated for some two decades. Usually this type of investigation is performed using a stochastic, as opposed to deterministic, framework. This choice is not based on the assumption that the flow process itself is stochastic, but rather on the recognition of the fact that the deterministic description of the parameter distributions would be impractical, if not impossible.

Initial research in this area did not consider the spatial structure of flow properties, assuming that either they behaved like the white noise process (lack of spatial correlation), or had a layered structure in the direction parallel or perpendicular to the flow (perfect correlation in one direction). The next step was to consider spatial correlation of flow properties.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×