Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-20T20:47:00.978Z Has data issue: false hasContentIssue false

Bifurcations with Symmetry

Published online by Cambridge University Press:  23 December 2009

Ian Stewart
Affiliation:
Mathematics Institute, Untverstty of Warwick, Coventry, CV4 7AL, U.K.
Get access

Summary

INTRODUCTION

Symmetries abound In nature, in technology, and - especially - in the simplified mathematical models that we study so assiduously. Symmetries complicate things and simplify them. They complicate them by introducing exceptional types of behaviour. Increasing the number of variables Involved, and making vanish things that usually do not vanish. They simplify them by introducing exceptional types of behaviour, increasing the number of variables involved, and making vanish things that usually do not vanish. They violate all the hypotheses of our favourite theorems, yet lead to natural generalizations of those theorems. It is now standard to study the ‘generic’ behaviour of dynamical systems. Symmetry is not generic. The answer is to work within the world of symmetric systems and to examine a suitably restricted Idea of genericity.

The pioneering work of Sattinger [1979, 1983], Vanderbauwhede [1982] and others opened up the possibility of a systematic theory, and during the past decade understanding of the bifurcation of dynamical systems with symmetry has developed into a recognizable subject with Its own distinctive identity: Equivariant Bifurcation Theory. It is not Just a tactical development: it embodies a general strategy for tackling the bifurcations of symmetric nonlinear systems. The technical machinery is extensive - Lie theory, representation theory, invariant theory, dynamical systems, and topology, for example - and the literature has grown to the point where the details can obscure the broader principles of the subject.

Symmetries are often exploited without being made explicit. For example, symmetry often forces multiple eigenvalues; but In any computation of those eigenvalues their multiplicity will emerge in due course.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×