Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T10:05:15.214Z Has data issue: false hasContentIssue false

Section 2 - Diagnosing Different Types of Dementia

Published online by Cambridge University Press:  25 October 2024

Simon Gerhand
Affiliation:
Hywel Dda Health Board, NHS Wales
Get access
Type
Chapter
Information
The Neuropsychology of Dementia
A Clinician's Manual
, pp. 59 - 130
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Aisen, P. S., Cummings, J., Jack, C. R., et al. (2017). On the path to 2025: Understanding the Alzheimer’s disease continuum. Alzheimer’s Research & Therapy, 9 (1), 110.Google ScholarPubMed
Alzheimer, A. (1907). Uber eine eigenaritage, schweren Erkrankung der Hirnrinde. Allgemeine Zeitschrift für Psychiatrie und phychish-Gerichtliche Medizin (Berlin), 25, 1134.Google Scholar
Alzheimer Association (2022). Alzheimer’s Disease Facts and Figures. Chicago, Illinois. Alzheimer Association, retrieved from Alzheimer’s Disease Facts and Figures. www.alz.org/media/Documents/2022-Facts-and-Figures-Report_1.pdf.Google Scholar
American Psychiatric Association (2013). Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition, Text Revision. Washington, DC, American Psychiatric Association.Google Scholar
Arnaiz, E., & Almkvist, O. (2003). Neuropsychological features of mild cognitive impairment and preclinical Alzheimer’s disease. Acta Neurologica Scandinavica, 107, 441.CrossRefGoogle Scholar
Bäckman, L., Jones, S., Berger, A. K., Laukka, E. J., & Small, B. J. (2005). Cognitive impairment in preclinical Alzheimer’s disease: A meta-analysis. Neuropsychology, 19(4), 520–31.CrossRefGoogle ScholarPubMed
Bellenguez, C., Grenier-Boley, B., & Lambert, J. C. (2020). Genetics of Alzheimer’s disease: Where we are, and where we are going. Current Opinion in Neurobiology, 61, 40–8.CrossRefGoogle ScholarPubMed
Bennett, D. A., Schneider, J. A., Arvanitakis, Z., et al. (2006). Neuropathology of older persons without cognitive impairment from two community-based studies. Neurology, 66 (12), 1837–44.CrossRefGoogle ScholarPubMed
Besser, L. M., Teylan, M. A., & Nelson, P. T. (2020). Limbic predominant age-related TDP-43 encephalopathy (LATE): clinical and neuropathological associations. Journal of Neuropathology & Experimental Neurology, 79 (3), 305–13.CrossRefGoogle ScholarPubMed
Bove, R., Secor, E., Chibnik, L. B., et al. (2014). Age at surgical menopause influences cognitive decline and Alzheimer pathology in older women. Neurology, 82 (3), 222–9.CrossRefGoogle ScholarPubMed
Brenowitz, W. D., Hubbard, R. A., Keene, C. D., et al. (2017). Mixed neuropathologies and estimated rates of clinical progression in a large autopsy sample. Alzheimer’s & Dementia, 13 (6), 654–62.CrossRefGoogle Scholar
Braak, H., & Braak, E. (1996). Evolution of the neuropathology of Alzheimer’s disease. Acta Neurologica Scandinavica, 94(S165), 312.CrossRefGoogle Scholar
Braak, H., Thal, D. R., Ghebremedhin, E., & Del Tredici, K. (2011). Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. Journal of Neuropathology and Experimental Neurology, 70 (11), 960–9.CrossRefGoogle ScholarPubMed
Brion, J. P., Passareiro, H., Nunez, J., Flament-Durand, J. (1985). Mise en évidence immunologique de la protéine tau au niveau des lésions de dégénérescence neurofibrillaire de la maladie d’Alzheimer. Arch Biol (Bruxelles), 95, 229–35.Google Scholar
Cacace, R., Sleegers, K., & Van Broeckhoven, C. (2016). Molecular gee tics of early-onset Alzheimer’s disease revisited. Alzheimer’s & Dementia, 12 (6), 733–48.CrossRefGoogle Scholar
Carlesimo, G. A., & Oscar-Berman, M. (1992). Memory deficits in Alzheimer’s patients: A comprehensive review. Neuropsychology Review, 3 (2), 119–69.CrossRefGoogle ScholarPubMed
Crutch, S. J., Schott, J. M., Rabinovici, G. D., et al. (2017). Consensus classification of posterior cortical atrophy. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, 13 (8), 870–84.CrossRefGoogle ScholarPubMed
Cummings, J. L., & Benson, D. F. (1992). Dementia: A Clinical Approach. Boston: Butterworth-Heineman.Google Scholar
Da Cunha, E., Plonka, A., Arslan, S., et al. (2022). Logogenic primary progressive aphasia or Alzheimer Disease: Contribution of acoustic markers in early differential diagnosis. Life, 12 (7), 933.CrossRefGoogle ScholarPubMed
Delis, D. C., Kramer, J. H., Kaplan, E., & Ober, B. A. (2000). California Verbal Learning Test-second edition: Adult version manual. San Antonio: Psychological Corporation.Google Scholar
De Reuck, J., Maurage, C. A., Deramecourt, V., et al. (2018). Aging and cerebrovascular lesions in pure and in mixed neurodegenerative and vascular dementia brains: A neuropathological study. Folia Neuropathologica, 56 (2), 81–7.CrossRefGoogle ScholarPubMed
Dickson, D. W., Davies, P., Bevona, C., et al. (1994). Hippocampal sclerosis: A common pathological feature of dementia in very old (4 or =80 years of age) humans. Acta Neuropathologica, 88, 212–21.CrossRefGoogle ScholarPubMed
Dubois, B., Villain, N., Frisoni, G. B., et al. (2021). Clinical diagnosis of Alzheimer’s disease: recommendations of the International Working Group. The Lancet Neurology, 20(6), 484–96.CrossRefGoogle ScholarPubMed
Duchek, J. M., Cheney, M., Ferraro, F. R., & Storandt, M. (1991). Paired associate learning in senile dementia of the Alzheimer type. Archives of neurology, 48 (10),1038–40.CrossRefGoogle ScholarPubMed
Enwefa, S., & Enwefa, R. (2018). Confrontation naming errors of Alzheimer’s disease patients. Online Journal of Neurology and Brain Disorders, http://dx.doi.org/10.32474/OJNBD.2018.01.000117.CrossRefGoogle Scholar
Fox, N. C., & Schott, J. M. (2004). Imaging cerebral atrophy: Normal ageing to Alzheimer’s disease. The Lancet, 363, 392–4.CrossRefGoogle ScholarPubMed
Gao, S., Burney, H. N., Callahan, C. M., Purnell, C. E., & Hendrie, H. C. (2019). Incidence of dementia and Alzheimer disease over time: A meta-analysis. Journal of the American Geriatrics Society, 67 (7), 1361–9.CrossRefGoogle ScholarPubMed
Glenner, G. G., Wong, C. W., Quaranta, V., & Eanes, E. D. (1984). The amyloid deposits in Alzheimer’s disease: Their nature and pathogenesis. Applied Pathology, 2 (6), 357–69.Google Scholar
Gorno‐Tempini, M. L., Dronkers, N. F., Rankin, K. P., et al. (2004). Cognition and anatomy in three variants of primary progressive aphasia. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society, 55 (3), 335–46.CrossRefGoogle ScholarPubMed
Gorno-Tempini, M. L., Hillis, A. E., Weintraub, S., et al. (2011). Classification of primary progressive aphasia and its variants. Neurology, 76 (11), 1006–14.CrossRefGoogle ScholarPubMed
Gumus, M., Multani, N., Mack, M. L., Tartaglia, M. C., & Alzheimer’s Disease Neuroimaging Initiative (2021). Progression of neuropsychiatric symptoms in young-onset versus late-onset Alzheimer’s disease. GeroScience, 43 (1), 213–23.CrossRefGoogle ScholarPubMed
Hardy, J. A., & Higgins, G. A. (1992). Alzheimer’s disease: The amyloid cascade hypothesis. Science, 256 (5054), 184–5.CrossRefGoogle ScholarPubMed
Henderson, V. W., & Sherwin, B. (2007). Surgical versus natural menopause. Menopause, 14 (3), 572–9.Google ScholarPubMed
Henry, J. D., Crawford, J. R., & Phillips, L. H. (2004). Verbal fluency performance in dementia of the Alzheimer’s type: a meta-analysis. Neuropsychologia, 42 (9), 1212–22.CrossRefGoogle ScholarPubMed
Herrup, K. (2015). The case for rejecting the amyloid cascade hypothesis. Nature Neuroscience, 18 (6), 794–9.CrossRefGoogle ScholarPubMed
Hicks, E. B., Ahsan, N., Bhandari, A., et al. (2021). Associations of visual paired associative learning task with global cognition and its potential usefulness as a screening tool for Alzheimer’s dementia. International Psychogeriatrics, 33 (11), 1135–44.Google ScholarPubMed
Hof, P. R., Vogt, B. A., Bouras, C., & Morrison, J. H. (1997). Atypical form of Alzheimer’s disease with prominent posterior cortical atrophy: A review of lesion distribution and circuit disconnection in cortical visual pathways. Vision Research, 37 (24), 3609–25.CrossRefGoogle ScholarPubMed
Jack, C. R., Jr, Bennett, D. A., Blennow, K., et al. (2018). NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimer’s & Dementia : The Journal of the Alzheimer’s Association, 14 (4), 535–62.CrossRefGoogle Scholar
Jack, C. R., Wiste, H. J., Weigand, S. D., et al. (2014). Age-specific population frequencies of cerebral β-amyloidosis and neurodegeneration among people with normal cognitive function aged 50–89 years: A cross-sectional study. The Lancet Neurology, 13 (10), 9971005.CrossRefGoogle ScholarPubMed
James, B. D., Bennett, D. A., Boyle, P. A., Leurgans, S., & Schneider, J. A. (2017). Dementia from Alzheimer disease and mixed pathologies in the oldest old. Journal of the American Medical Association, 307 (17), 1798–800.Google Scholar
Johnson, D. K., Storandt, M., Balota, D. A. (2003). Discourse analysis of logical memory recall in normal aging and in dementia of the Alzheimer type. Neuropsychology, 17, 8292.CrossRefGoogle ScholarPubMed
Kapasi, A., DeCarli, C., & Schneider, J. A. (2017). Impact of multiple pathologies on the threshold for clinically overt dementia. Acta Neuropathologica, 134 (2), 171–86.CrossRefGoogle ScholarPubMed
Koedam, E., Lauffer, V., van der Vlies, A., et al. (2010). Early-versus late-onset A;zheimer’s disease: More than age alone. Journal of Alzheimer’s Disease, 19 (4), 1401–8.Google ScholarPubMed
Lukatela, K., Malloy, P., Jenkins, M., & Cohen, R. (1998). The naming deficit in early Alzheimer’s and vascular dementia. Neuropsychology, 12 (4), 565–72.CrossRefGoogle ScholarPubMed
Maccioni, R., Farias, G., Morales, I., & Navarette, L. (2010). The revitalized tau hypothesis on Alzheimer’s disease. Archives of Medical Research, 41 (3), 226–31.CrossRefGoogle ScholarPubMed
Mackenzie, I. R., Bigio, E. H., Ince, P. G., et al. (2007). Pathological TDP‐43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations. Annals of Neurology:Official Journal of the American Neurological Association and the Child Neurology Society, 61 (5), 427–34.CrossRefGoogle ScholarPubMed
McMonagle, P., Deering, F., Berliner, Y., & Kertesz, A. (2006). The cognitive profile of posterior cortical atrophy. Neurology, 66 (3), 331–8.CrossRefGoogle ScholarPubMed
Marshall, C. R., Hardy, C. J., Volkmer, A., et al. (2018). Primary progressive aphasia: A clinical approach. Journal of Neurology, 265 (6), 1474–90.CrossRefGoogle ScholarPubMed
McKhann, G., Drachman, D., Folstein, M., et al. (1984). Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology, 34, 939–44.CrossRefGoogle ScholarPubMed
McKhann, G. M., Knopman, D. S., Chertkow, H., et al. (2011). The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia, 7 (3), 263–9.CrossRefGoogle ScholarPubMed
Mendez, M. F., Ghajarania, M., & Perryman, K. M. (2002). Posterior cortical atrophy: Clinical characteristics and differences compared to Alzheimer’s disease. Dementia and Geriatric Cognitive Disorders, 14 (1), 3340.CrossRefGoogle ScholarPubMed
Mesulam, M. M., Wieneke, C., Thompson, C., Rogalski, E., & Weintraub, S. (2012). Quantitative classification of primary progressive aphasia at early and mild impairment stages. Brain, 135 (5), 1537–53.CrossRefGoogle ScholarPubMed
Nelson, P. T., Dickson, D. W., Trojanowski, J. Q., et al. (2019). Limbic-predominant age-related TDP-43 encephalopathy (LATE): Consensus working group report. Brain, 142 (6), 1503–27.CrossRefGoogle ScholarPubMed
Nelson, P. T., Head, E., Schmitt, F. A., et al. (2011). Alzheimer’s disease is not ‘brain aging’: neuropathological, genetic, and epidemiological human studies. Acta Neuropathologica, 121 (5), 571587.CrossRefGoogle Scholar
Nelson, P. T., Schmitt, F. A., Lin, Y., et al. (2011). Hippocampal sclerosis in advanced age: Clinical and pathological features. Brain, 134 (5), 1506–18.CrossRefGoogle ScholarPubMed
Niu, H., Álvarez-Álvarez, I., Guillén-Grima, F., & Aguinaga-Ontoso, I. (2017). Prevalence and incidence of Alzheimer’s disease in Europe: A meta-analysis. Neurología, 32 (8), 523–32.CrossRefGoogle ScholarPubMed
Pache, M., Smeets, C. H., Gasio, P. F., et al. (2003). Colour vision deficiencies in Alzheimer’s disease. Age and Ageing, 32 (4), 422–6.CrossRefGoogle ScholarPubMed
Pao, W. C., Dickson, D. W., Crook, J. E., et al. (2011). Hippocampal sclerosis in the elderly: Genetic and pathologic findings, some mimicking Alzheimer disease clinically. Alzheimer Disease and Associated Disorders, 25, 364–8.CrossRefGoogle Scholar
Price, J. L., & Morris, J. C. (1999). Tangles and plaques in nondemented aging and ‘preclinical’ Alzheimer’s disease. Annals of Neurology: Official Journal of the American Neurological Association and The Child Neurology Society, 45 (3), 358–68.3.0.CO;2-X>CrossRefGoogle ScholarPubMed
Rabin, L. A., Paré, N., Saykin, A. J., et al. (2009). Differential memory test sensitivity for diagnosing amnestic mild cognitive impairment and predicting conversion to Alzheimer’s disease. Aging, Neuropsychology, and Cognition, 16 (3), 357–76.CrossRefGoogle ScholarPubMed
Rajan, K. B., Weuve, J., Barnes, L. L., Wilson, R. S., & Evans, D. A. (2019). Prevalence and incidence of clinically diagnosed Alzheimer’s disease dementia from 1994 to 2012 in a population study. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, 15 (1), 17.CrossRefGoogle ScholarPubMed
Rajan, K. B., Weuve, J., Barnes, L. L., et al. (2021). Population estimate of people with clinical Alzheimer’s disease and mild cognitive impairment in the United States (2020–2060). Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, 17 (12), 1966–75.CrossRefGoogle ScholarPubMed
Rohrer, J. D., Ridgway, G. R., Crutch, S. J., et al. (2010). Progressive logopenic/phonological aphasia: erosion of the language network. Neuroimage, 49 (1), 984–93.CrossRefGoogle ScholarPubMed
Rossor, M. N., Fox, N. C., Mummery, C. J., Schott, J. M., & Warren, J. D. (2010). The diagnosis of young-onset dementia. The Lancet. Neurology, 9 (8), 793806.CrossRefGoogle ScholarPubMed
Saunders, A. M., Blennow, K., Breteler, M. M. B. et al. (1993). Association of apolipoprotein E allele ϵ4 with late-onset familial and sporadic Alzheimer’s disease. Neurology, 43 (8), 1467.CrossRefGoogle ScholarPubMed
Sawyer, R. P., Rodriguez-Porcel, F., Hagen, M., Shatz, R., & Espay, A. J. (2017). Diagnosing the frontal variant of Alzheimer’s disease: A clinician’s yellow brick road. Journal of Clinical Movement Disorders, 4, 2.CrossRefGoogle ScholarPubMed
Schmidt, M. (1996). Rey Auditory and Verbal Learning Test: A handbook. Los Angeles: Western Psychological Services.Google Scholar
Schöll, M., Lockhart, S. N., Schonhaut, D. R., et al. (2016). PET imaging of tau deposition in the aging human brain. Neuron, 89 (5), 971–82.CrossRefGoogle ScholarPubMed
Schott, J. M., & Crutch, S. J. (2019). Posterior cortical atrophy. Continuum, 25 (1), 5275.Google ScholarPubMed
Silbert, L. C., Quinn, J. F., Moore, M. M., et al. (2003). Changes in premorbid brain volume predict Alzheimer’s disease pathology. Neurology, 61 (4), 487–92.CrossRefGoogle ScholarPubMed
Spina, S., La Joie, R., Petersen, C., et al. (2021). Comorbid neuropathological diagnoses in early versus late-onset Alzheimer’s disease. Brain: A Journal of Neurology, 144 (7), 2186–98.CrossRefGoogle ScholarPubMed
Stanley, K., & Walker, Z. (2014). Do patients with young onset Alzheimer’s disease deteriorate faster than those with late onset Alzheimer’s disease? A review of the literature. International Psychogeriatrics, 26 (12), 1945–53.CrossRefGoogle ScholarPubMed
Stroop, J. R. (1935). Studies of interference in serial verbal reaction. Journal of Experimental Psychology, 18, 643–62.CrossRefGoogle Scholar
Stute, P., Wienges, J., Koller, A. S., et al. (2021). Cognitive health after menopause: Does menopausal hormone therapy affect it? Best Practice & Research Clinical Endocrinology & Metabolism, 35 (6), 101565.CrossRefGoogle Scholar
Tang, M. X., Jacobs, D., Stern, Y., et al. (1996). Effect of oestrogen during menopause on risk and age at onset of Alzheimer’s disease. The Lancet, 348 (9025), 429–32.CrossRefGoogle ScholarPubMed
Tang‐Wai, D. F., Josephs, K. A., Boeve, B. F., et al. (2003). Pathologically confirmed corticobasal degeneration presenting with visuospatial dysfunction. Neurology, 61, 1134–5.CrossRefGoogle ScholarPubMed
Tom, S. E., Hubbard, R. A., Crane, P. K., et al. (2015). Characterization of dementia and Alzheimer’s disease in an older population: Updated incidence and life expectancy with and without dementia. American Journal of Public Health, 105 (2), 408–13.CrossRefGoogle Scholar
Tremont, D., Halpert, S., Javorsky, D. J., & Stern, R. A. (2000). Differential impact of executive dysfunction on verbal list learning and story recall. The Clinical Neuropsychologist, 14, 295302.CrossRefGoogle ScholarPubMed
van der Flier, W. M., Pijnenburg, Y. A., Fox, N. C., & Scheltens, P. (2011). Early-onset versus late-onset Alzheimer’s disease: The case of the missing APOE ɛ4 allele. The Lancet Neurology, 10 (3), 280–8.CrossRefGoogle ScholarPubMed
Vellas, B., Carrillo, M. C., Sampaio, C., et al. (2013). Designing drug trials for Alzheimer’s disease: What we have learned from the release of the phase III antibody trials: A report from the EU/US/CTAD Task Force. Alzheimers & Dementia, 9 (4), 438444.CrossRefGoogle ScholarPubMed
Wu, M., Li, M., Yuan, J., et al. (2020). Postmenopausal hormone therapy and Alzheimer’s disease, dementia, and Parkinson’s disease: A systematic review and time-response meta-analysis. Pharmacological Research, 155, p.104693.CrossRefGoogle ScholarPubMed
Zakzanis, K. K., Leach, L., & Kaplan, E. (1999). Neuropsychological Differential Diagnosis. Lisse: Swets & Zeitlinger.Google Scholar

References

Alexopoulos, G. S., Bruce, M. L., Silbersweig, D., Kalayam, B., & Stern, E. (2022). Vascular depression: A new view of late-onset depression. Dialogues in Clinical Neuroscience, 1 (2), 6880.CrossRefGoogle Scholar
Alzheimer’s Society (2022). CADASIL is a rare, inherited type of vascular disease that can cause dementia. www.alzheimers.org.uk/about-dementia/types-dementia/cadasil.Google Scholar
American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. 5th edition. (2013). Washington, DC: American Psychiatric Publishing.Google Scholar
Andersen, K., Launer, L. J., Dewey, M. E., et al. (1999). Gender differences in the incidence of AD and vascular dementia: The EURODEM Studies. Neurology, 53 (9), 1992.CrossRefGoogle ScholarPubMed
Attems, J., & Jellinger, K. A. (2014). The overlap between vascular disease and Alzheimer’s disease-lessons from pathology. BMC Medicine, 12 (1), 112.CrossRefGoogle ScholarPubMed
Ayerbe, L., Ayis, S., Wolfe, C. D., & Rudd, A. G. (2013). Natural history, predictors and outcomes of depression after stroke: Systematic review and meta-analysis. The British Journal of Psychiatry, 202 (1), 1421.CrossRefGoogle ScholarPubMed
Ballard, C., Neill, D., O’Brien, J., et al. (2000). Anxiety, depression and psychosis in vascular dementia: Prevalence and associations. Journal of Affective Disorders, 59 (2), 97106.CrossRefGoogle ScholarPubMed
Biffi, A., & Greenberg, S. M. (2011). Cerebral amyloid angiopathy: A systematic review. Journal of Clinical Neurology, 7 (1), 19.CrossRefGoogle ScholarPubMed
Cerciello, M., Isella, V., Proserpi, A., & Papagno, C. (2017). Assessment of free and cued recall in Alzheimer’s disease and vascular and frontotemporal dementia with 24-item Grober and Buschke test. Neurological Sciences, 38 (1), 115–22.CrossRefGoogle ScholarPubMed
De Leeuw, F. E., de Groot, J. C., Achten, E., et al. (2001). Prevalence of cerebral white matter lesions in elderly people: A population based magnetic resonance imaging study. The Rotterdam Scan Study. Journal of Neurology, Neurosurgery & Psychiatry, 70 (1), 914.CrossRefGoogle Scholar
Dichgans, M., & Leys, D. (2017). Vascular cognitive impairment. Circulation Research, 120 (3), 573–91.CrossRefGoogle ScholarPubMed
Enciu, A. M., & Popescu, B. O. (2013). Is there a causal link between inflammation and dementia? BioMedical Research International, Article ID 316495. http://dx.doi.org/10.1155/2013/316495.CrossRefGoogle Scholar
Ferrante, E. A., Cudrici, C. D., & Boehm, M. (2019). CADASIL: New advances in basic science and clinical perspectives. Current Opinion in Hematology, 26 (3), 193.CrossRefGoogle ScholarPubMed
Fierini, F. (2020). Mixed dementia: Neglected clinical entity or nosographic artifice? Journal of the Neurological Sciences, 410, 116662.CrossRefGoogle ScholarPubMed
Gorelick, P. B., Scuteri, A., Black, S. E., et al. (2011). Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke, 42 (9), 2672–713.CrossRefGoogle ScholarPubMed
Graham, N. L., Emery, T., & Hodges, J. R. (2004). Distinctive cognitive profiles in Alzheimer’s disease and subcortical vascular dementia. Journal of Neurology, Neurosurgery & Psychiatry, 75, 6171.Google ScholarPubMed
Gräsel, E., Cameron, S., & Lehrl, S. (1990). What contribution can the Hachinski Ischemic Scale make to the differential diagnosis between multi-infarct dementia and primary degenerative dementia? Archives of Gerontology and Geriatrics, 11 (1), 6375.CrossRefGoogle Scholar
Hachinski, V. C., & Bowler, J. V. (1993). Vascular dementia. Neurology, 43, 2159–60.CrossRefGoogle ScholarPubMed
Hachinski, V. C., Iliff, L. D., Zilhka, E., et al. (1975). Cerebral blood flow in dementia. Archives of Neurology, 32 (9), 632–7.CrossRefGoogle ScholarPubMed
Hachinski, V. C., Lassen, N. A., & Marshall, J. (1974). Multi-infarct dementia: A cause of mental deterioration in the elderly. The Lancet, 304 (7874), 207–9.CrossRefGoogle Scholar
Hébert, R., & Brayne, C. (1995). Epidemiology of vascular dementia. Neuroepidemiology, 14(5), 240–57.CrossRefGoogle ScholarPubMed
Herbert, V., Brookes, R. L., Markus, H. S., & Morris, R. G. (2014). Verbal fluency in cerebral small vessel disease and Alzheimer’s disease. Journal of the International Neuropsychological Society, 20(4), 413–21.CrossRefGoogle ScholarPubMed
Iadecola, C., Duering, M., Hachinski, V., et al. (2019). Vascular cognitive impairment and dementia: JACC scientific expert panel. Journal of the American College of Cardiology, 73 (25), 3326–44.Google ScholarPubMed
Jordan, F., Quinn, T. J., McGuinness, B., et al. (2020). Aspirin and other non‐steroidal anti‐inflammatory drugs for the prevention of dementia. Cochrane Database of Systematic Reviews, 4, CD011459.Google ScholarPubMed
Jorm, A. F., & Jolley, D. (1998). The incidence of dementia: A meta-analysis. Neurology, 51 (3), 728–33.CrossRefGoogle ScholarPubMed
Klohs, J. (2019). An integrated view on vascular dysfunction in Alzheimer’s disease. Neurodegenerative Diseases, 19 (3–4), 109–27.CrossRefGoogle ScholarPubMed
Knopman, D. S., DeKosky, S. T., Cummings, J. L., et al. (2001). Practice parameter: Diagnosis of dementia (an evidence-based review): Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology, 56 (9), 1143–53.CrossRefGoogle Scholar
Krishnan, K. R. (2002). Biological risk factors in late life depression. Biological Psychiatry, 52, 185–92.CrossRefGoogle ScholarPubMed
Kua, E. H., Ho, E., Tan, H. H., et al. (2014). The natural history of dementia. Psychogeriatrics, 14 (3), 196201.CrossRefGoogle ScholarPubMed
Moroney, J. T., Bagiella, E., Desmond, D. W., et al. (1997). Meta-analysis of the Hachinski Ischemic Score in pathologically verified dementias. Neurology, 49(4), 1096–105.CrossRefGoogle ScholarPubMed
Niwa, K., Kazama, K., Younkin, L., et al. (2002). Cerebrovascular autoregulation is profoundly impaired in mice overexpressing amyloid precursor protein. American Journal of Physiology-Heart and Circulatory Physiology, 283 (1), H315H323.CrossRefGoogle ScholarPubMed
O’Brien, J., & Thomas, A. (2015). Vascular dementia. The Lancet, 386 (10004), 1698–706.Google ScholarPubMed
Pendlebury, S. T., & Rothwell, P. M. (2009). Prevalence, incidence, and factors associated with pre-stroke and post-stroke dementia: A systematic review and meta-analysis. The Lancet Neurology, 8 (11), 1006–18.CrossRefGoogle ScholarPubMed
Pendlebury, S. T., Wadling, S., Silver, L. E., Mehta, Z., & Rothwell, P. M. (2011). Transient cognitive impairment in TIA and minor stroke. Stroke, 42 (11), 3116–21.CrossRefGoogle ScholarPubMed
Price, C. C., Jefferson, A. L., Merino, J. G., Heilman, K. M., & Libon, D. J. (2005). Subcortical vascular dementia: Integrating neuropsychological and neuroradiologic data. Neurology, 65 (3), 376–82.CrossRefGoogle ScholarPubMed
Purnell, C., Gao, S., Callahan, C. M., & Hendrie, H. C. (2009). Cardiovascular risk factors and incident Alzheimer disease: A systematic review of the literature. Alzheimer Disease and Associated Disorders, 23 (1), 110.CrossRefGoogle ScholarPubMed
Rasquin, S. M. C., Lodder, J., & Verhey, F. R. J. (2005). Predictors of reversible mild cognitive impairment after stroke: A 2-year follow-up study. Journal of the Neurological Sciences, 229, 21–5.Google ScholarPubMed
Román, G. C. (2004). Facts, myths, and controversies in vascular dementia. Journal of the Neurological Sciences, 226 (1–2), 4952.CrossRefGoogle ScholarPubMed
Román, G. C., Tatemichi, T. K., Erkinjuntti, T., et al. (1993). Vascular dementia: diagnostic criteria for research studies: Report of the NINDS‐AIREN International Workshop. Neurology, 43 (2), 250.CrossRefGoogle ScholarPubMed
Sachdev, P. S., Brodaty, H., Valenzuela, M. J., et al. (2004). The neuropsychological profile of vascular cognitive impairment in stroke and TIA patients. Neurology, 62 (6), 912–19.CrossRefGoogle ScholarPubMed
Sachdev, P., Kalaria, R., O’Brien, J., et al. (2014). Diagnostic criteria for vascular cognitive disorders: A VASCOG statement. Alzheimer Disease and Associated Disorders, 28 (3), 206–18.CrossRefGoogle ScholarPubMed
Skrobot, O. A., Black, S. E., Chen, C., et al. (2018). Progress toward standardized diagnosis of vascular cognitive impairment: Guidelines from the Vascular Impairment of Cognition Classification Consensus Study. Alzheimer’s & Dementia, 14 (3), 280292.CrossRefGoogle ScholarPubMed
Smith, E. E. (2017). Clinical presentations and epidemiology of vascular dementia. Clinical Science, 131 (11), 1059–68.CrossRefGoogle ScholarPubMed
Snowden, D. (2001). Aging with Grace: What the Nun Study Teaches Us About Leading Longer, Healthier and More Meaningful Lives. New York: Bantam Press.Google Scholar
Snowdon, D. A., Greiner, L. H., Mortimer, , et al. (1997). Brain infarction and the clinical expression of Alzheimer disease: The Nun Study. JAMA, 277 (10), 813–17.CrossRefGoogle ScholarPubMed
Tiel, C., Sudo, F. K., Alves, G. S., et al. (2015). Neuropsychiatric symptoms in vascular cognitive impairment: a systematic review. Dementia & Neuropsychologia, 9, 230–6.CrossRefGoogle ScholarPubMed
Tierney, M. C., Black, S. E., Szalai, J. P., et al. (2001). Recognition memory and verbal fluency differentiate probable Alzheimer disease from subcortical ischemic vascular dementia. Archives of Neurology, 58 (10), 1654–9.CrossRefGoogle ScholarPubMed
Toledo, J. B., Arnold, S. E., Raible, K., et al. (2013). Contribution of cerebrovascular disease in autopsy confirmed neurodegenerative disease cases in the National Alzheimer’s Coordinating Centre. Brain, 136 (9), 2697–706.CrossRefGoogle ScholarPubMed
Traykov, L., Baudic, S., Raoux, N., et al. (2005). Patterns of memory impairment and perseverative behavior discriminate early Alzheimer’s disease from subcortical vascular dementia. Journal of the Neurological Sciences, 229, 75–9.Google ScholarPubMed
Vasquez, B. P., & Zakzanis, K. K. (2015). The neuropsychological profile of vascular cognitive impairment not demented: A meta‐analysis. Journal of Neuropsychology, 9 (1), 109–36.CrossRefGoogle Scholar
Wen, W., Sachdev, P. S., Li, J. J., Chen, X., & Anstey, K. J. (2009). White matter hyperintensities in the forties: Their prevalence and topography in an epidemiological sample aged 44–48. Human Brain Mapping, 30 (4), 1155–67.CrossRefGoogle Scholar
Wolters, F. J., & Ikram, M. A. (2019). Epidemiology of vascular dementia: Nosology in a time of epiomics. Arteriosclerosis, Thrombosis, and Vascular Biology, 39(8), 1542–9.CrossRefGoogle Scholar
Yoshitake, T., Kiyohara, Y., Kato, I., et al. (1995). Incidence and risk factors of vascular dementia and Alzheimer’s disease in a defined elderly Japanese population: The Hisayama Study. Neurology, 45 (6), 1161–8.CrossRefGoogle Scholar
Zekry, D., Duyckaerts, C., Moulias, R., et al. (2002). Degenerative and vascular lesions of the brain have synergistic effects in dementia of the elderly. Acta Neuropathologica, 103 (5), 481–7.CrossRefGoogle ScholarPubMed

References

Aarsland, D., Ballard, C., Larsen, J. P., & McKeith, I. (2001). A comparative study of psychiatric symptoms in dementia with Lewy bodies and Parkinson’s disease with and without dementia. International Journal of Geriatric Psychiatry, 16 (5), 528–36.CrossRefGoogle ScholarPubMed
Aarsland, D., Zaccai, J., & Brayne, C. (2005). A systematic review of prevalence studies of dementia in Parkinson’s disease. Movement Disorders: Official Journal of the Movement Disorder Society, 20 (10), 1255–63.CrossRefGoogle ScholarPubMed
Albert, M. S., DeKosky, S. T., Dickson, D., et al. (2011). The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging–Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia, 7 (3), 270–9.CrossRefGoogle ScholarPubMed
Aldridge, G. M., Birnschein, A., Denburg, N. L., & Narayanan, N. S. (2018). Parkinson’s disease dementia and dementia with Lewy bodies have similar neuropsychological profiles. Frontiers in Neurology, 9, 323049.CrossRefGoogle ScholarPubMed
Anang, J. B., Gagnon, J. F., Bertrand, J. A., et al. (2014). Predictors of dementia in Parkinson disease: A prospective cohort study. Neurology, 83 (14), 1253–60.CrossRefGoogle ScholarPubMed
Armstrong, M. J., Litvan, I., Lang, A. E., et al. (2013). Criteria for the diagnosis of corticobasal degeneration. Neurology, 80 (5), 496503.CrossRefGoogle ScholarPubMed
Benito‐León, J., Bermejo‐Pareja, F., Rodríguez, J., et al. (2003). Prevalence of PD and other types of parkinsonism in three elderly populations of central Spain. Movement Disorders, 18 (3), 267–74.Google ScholarPubMed
Ben-Shlomo, Y., Wenning, G. K., Tison, F., & Quinn, N. P. (1997). Survival of patients with pathologically proven multiple system atrophy: A meta-analysis. Neurology, 48 (2), 384–93.CrossRefGoogle ScholarPubMed
Berg, D., Postuma, R. B., Adler, C. H., et al. (2015). MDS research criteria for prodromal Parkinson’s disease. Movement Disorders, 30 (12), 1600–11.CrossRefGoogle ScholarPubMed
Bonelli, S. B., Ransmayr, G., Steffelbauer, M., et al. (2004). L-dopa responsiveness in dementia with Lewy bodies, Parkinson disease with and without dementia. Neurology, 63 (2), 376–8.CrossRefGoogle ScholarPubMed
Braak, H., Del Tredici, K., Rüb, U., et al. (2003). Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiology of Aging, 24 (2), 197211.CrossRefGoogle ScholarPubMed
Brockmann, K., Srulijes, K., Pflederer, S., et al. (2015). GBA‐associated Parkinson’s disease: Reduced survival and more rapid progression in a prospective longitudinal study. Movement Disorders, 30 (3), 407–11.CrossRefGoogle ScholarPubMed
Cammisuli, D. M., Cammisuli, S. M., Fusi, J., Franzoni, F., & Pruneti, C. (2019). Parkinson’s disease–mild cognitive impairment (PD-MCI): A useful summary of update knowledge. Frontiers in Aging Neuroscience, 11, 303.CrossRefGoogle ScholarPubMed
Chan, P. C., Lee, H. H., Hong, C. T., Hu, C. J., & Wu, D. (2018). REM sleep behavior disorder (RBD) in dementia with Lewy bodies (DLB). Behavioural Neurology, 2018, ID 9421098. https://doi.org/10.1155/2018/9421098.CrossRefGoogle ScholarPubMed
Cools, R. (2006). Dopaminergic modulation of cognitive function-implications for L-DOPA treatment in Parkinson’s disease. Neuroscience & Biobehavioral Reviews, 30 (1), 123.CrossRefGoogle ScholarPubMed
Cummings, J. L. (1988). Intellectual impairment in Parkinson’s disease: Clinical, pathologic, and biochemical correlates. Topics in Geriatrics, 1 (1), 2436.Google ScholarPubMed
de Lau, L. M., Schipper, C. M. A., Hofman, A., Koudstaal, P. J., & Breteler, M. M. (2005). Prognosis of Parkinson disease: Risk of dementia and mortality: The Rotterdam Study. Archives of Neurology, 62(8), 1265–9.CrossRefGoogle ScholarPubMed
Dickson, D. W., Bergeron, C., Chin, S. S., et al. (2002). Office of Rare Diseases neuropathologic criteria for corticobasal degeneration. Journal of Neuropathology & Experimental Neurology, 61 (11), 935–46.CrossRefGoogle ScholarPubMed
Downes, J. J., Priestley, N. M., Doran, M., et al. (1998). Intellectual, mnemonic, and frontal functions in dementia with Lewy bodies: A comparison with early and advanced Parkinson’s disease. Behavioural Neurology, 11 (3), 173–83.Google ScholarPubMed
Dubois, B., & Pillon, B. (1997). Cognitive deficits in Parkinson’s disease. Journal of Neurology, 244, 28.CrossRefGoogle ScholarPubMed
Emre, M., Aarsland, D., Brown, R., et al. (2007). Clinical diagnostic criteria for dementia associated with Parkinson’s disease. Movement disorders: Official Journal of the Movement Disorder Society, 22 (12), 1689–707.CrossRefGoogle ScholarPubMed
Filoteo, J. V., Salmon, D. P., Schiehser, D. M., et al. (2009). Verbal learning and memory in patients with dementia with Lewy bodies or Parkinson’s disease with dementia. Journal of Clinical and Experimental Neuropsychology, 31 (7), 823–34.CrossRefGoogle ScholarPubMed
Friedman, J. H. (2017). Misperceptions and Parkinson’s disease. Journal of the Neurological Sciences, 374, 42–6.CrossRefGoogle ScholarPubMed
Gaig, C., Valldeoriola, F., Gelpi, E., et al. (2011). Rapidly progressive diffuse Lewy body disease. Movement Disorders, 26 (7), 1316–23.Google ScholarPubMed
Gallagher, C. (2019). Imaging in Parkinson’s disease: Imaging studies can differentiate Parkinson’s from other causes of Parkinsonism. Practical Neurology, 35, 2931.Google Scholar
Gerstenecker, A. (2017). The neuropsychology (broadly conceived) of multiple system atrophy, progressive supranuclear palsy, and corticobasal degeneration. Archives of Clinical Neuropsychology, 32 (7), 861–75.CrossRefGoogle ScholarPubMed
Gibb, W. R., & Lees, A. (1988). The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson’s disease. Journal of Neurology, Neurosurgery & Psychiatry, 51(6), 745–52.CrossRefGoogle Scholar
Gomperts, S. N. (2016). Lewy body dementias: Dementia with Lewy bodies and Parkinson disease dementia. Continuum: Lifelong Learning in Neurology, 22(2), 435.Google ScholarPubMed
Gnanalingham, K. K., Byrne, E. J., Thornton, A., Sambrook, M. A., & Bannister, P. (1997). Motor and cognitive function in Lewy body dementia: Comparison with Alzheimer’s and Parkinson’s diseases. Journal of Neurology, Neurosurgery & Psychiatry, 62 (3), 243–52.CrossRefGoogle ScholarPubMed
Gurd, J. M., Herzberg, L., Joachim, C., et al. (2000). Dementia with Lewy bodies: A pure case. Brain and Cognition, 44 (3), 307–23.CrossRefGoogle ScholarPubMed
Hely, M. A., Morris, J. G., Reid, W. G., & Trafficante, R. (2005). Sydney multicenter study of Parkinson’s disease: Non‐L‐dopa–responsive problems dominate at 15 years. Movement Disorders: Official Journal of the Movement Disorder Society, 20 (2), 190–9.CrossRefGoogle ScholarPubMed
Hobson, P., & Meara, J. (2004). Risk and incidence of dementia in a cohort of older subjects with Parkinson’s disease in the United Kingdom. Movement Disorders, 19 (9), 1043–9.CrossRefGoogle Scholar
Hogan, D. B., Fiest, K. M., Roberts, J. I., et al. (2016). The prevalence and incidence of dementia with Lewy bodies: A systematic review. Canadian Journal of Neurological Sciences, 43(S1), S83S95.CrossRefGoogle ScholarPubMed
Höglinger, G. U., Respondek, G., Stamelou, M., et al. (2017). Clinical diagnosis of progressive supranuclear palsy: The movement disorder society criteria. Movement Disorders, 32 (6), 853–64.CrossRefGoogle ScholarPubMed
Hu, M. T. (2020). REM sleep behavior disorder (RBD). Neurobiology of Disease, 143, 104996.CrossRefGoogle ScholarPubMed
Hughes, T. A., Ross, H. F., Musa, S., et al. (2000). A 10-year study of the incidence of and factors predicting dementia in Parkinson’s disease. Neurology, 54 (8), 1596–603.CrossRefGoogle ScholarPubMed
Iansek, R., & Dandoudis, M. (2019). Parkinson’s disease. In Hocking, D., Bradshaw, J. & Fielding, J. (Eds.), Degenerative Disorders of the Brain (pp. 6587). Oxford: Routledge.CrossRefGoogle Scholar
Jankovic, J., & Aguilar, L. G. (2008). Current approaches to the treatment of Parkinson’s disease. Neuropsychiatric Disease and Treatment, 4 (4), 743.CrossRefGoogle Scholar
Janvin, C. C., Larsen, J. P., Aarsland, D., & Hugdahl, K. (2006). Subtypes of mild cognitive impairment in Parkinson’s disease: Progression to dementia. Movement Disorders: Official Journal of the Movement Disorder Society, 21 (9), 1343–9.CrossRefGoogle ScholarPubMed
Jellinger, K. A. (2018). Dementia with Lewy bodies and Parkinson’s disease-dementia: current concepts and controversies. Journal of Neural Transmission, 125 (4), 615–50.CrossRefGoogle Scholar
Kao, A. W., Racine, C. A., Quitania, L. C., et al. (2009). Cognitive and neuropsychiatric profile of the synucleinopathies: Parkinson’s disease, dementia with Lewy bodies and multiple system atrophy. Alzheimer Disease and Associated Disorders, 23 (4), 365.CrossRefGoogle ScholarPubMed
Kim, W. S., Kågedal, K., & Halliday, G. M. (2014). Alpha-synuclein biology in Lewy body diseases. Alzheimer’s Research & Therapy, 6 (5), 19.Google ScholarPubMed
Koga, S., Parks, A., Kasanuki, K., et al. (2017). Cognitive impairment in progressive supranuclear palsy is associated with tau burden. Movement Disorders, 32 (12), 1772–9.CrossRefGoogle ScholarPubMed
Kouri, N., Murray, M. E., Hassan, A., et al. (2011). Neuropathological features of corticobasal degeneration presenting as corticobasal syndrome or Richardson syndrome. Brain, 134 (11), 3264–75.CrossRefGoogle ScholarPubMed
Lagarde, J., Valabrègue, R., Corvol, J.-C., et al. (2013). Are frontal cognitive and atrophy patterns different in PSP and bvFTD? A comparative neuropsychological and VBM study. PLoS ONE, 8(11), e80353. https://doi.org/10.1371/journal.pone.0080353.CrossRefGoogle ScholarPubMed
Litvan, I., Aarsland, D., Adler, C. H., et al. (2011). MDS Task Force on mild cognitive impairment in Parkinson’s disease: Critical review of PD‐MCI. Movement Disorders, 26 (10), 1814–24.CrossRefGoogle ScholarPubMed
Litvan, I., Agid, Y., Calne, D., et al. (1996). Clinical research criteria for the diagnosis of progressive supranuclear palsy (Steele-Richardson-Olszewski syndrome): Report of the NINDS-SPSP international workshop. Neurology, 47 (1), 19.CrossRefGoogle ScholarPubMed
Litvan, I., Goldman, J. G., Tröster, A. I., et al. (2012). Diagnostic criteria for mild cognitive impairment in Parkinson’s disease: Movement Disorder Society Task Force guidelines. Movement Disorders, 27 (3), 349–56.Google ScholarPubMed
McKeith, I. G., Boeve, B. F., Dickson, D. W., et al. (2017). Diagnosis and management of dementia with Lewy bodies: Fourth consensus report of the DLB Consortium. Neurology, 89 (1), 88100.CrossRefGoogle ScholarPubMed
McKeith, I., Mintzer, J., Aarsland, D., et al. (2004). International Psychogeriatric Association expert meeting on DLB: Dementia with Lewy bodies. Lancet Neurology, 3 (1), 1928.CrossRefGoogle ScholarPubMed
Morens, D. M., Davis, J. W., Grandinetti, A., et al. (1996). Epidemiologic observations on Parkinson’s disease: Incidence and mortality in a prospective study of middle-aged men. Neurology, 46 (4), 1044–50.CrossRefGoogle Scholar
Moretti, D. V. (2019). Available and future treatments for atypical parkinsonism. A systematic review. CNS Neuroscience & Therapeutics, 25 (2), 159–74.CrossRefGoogle ScholarPubMed
Mosimann, U. P., Mather, G., Wesnes, K. A., et al. (2004). Visual perception in Parkinson disease dementia and dementia with Lewy bodies. Neurology, 63 (11), 2091–6.CrossRefGoogle ScholarPubMed
Mouton, A., Blanc, F., Gros, A., et al. (2018). Sex ratio in dementia with Lewy bodies balanced between Alzheimer’s disease and Parkinson’s disease dementia: A cross-sectional study. Alzheimer’s Research & Therapy, 10 (1), 110.Google ScholarPubMed
Nalls, M. A., Duran, R., Lopez, G., et al. (2013). A multicenter study of glucocerebrosidase mutations in dementia with Lewy bodies. JAMA Neurology, 70 (6), 727–35.CrossRefGoogle ScholarPubMed
Nath, U., Ben-Shlomo, Y., Thomson, R. G., Lees, A. J., & Burn, D. J. (2003). Clinical features and natural history of progressive supranuclear palsy: A clinical cohort study. Neurology, 60 (6), 910–16.CrossRefGoogle ScholarPubMed
Nelson, H. E. (1982). National Adult Reading Test (NART): Test manual. Windsor: NFER-Nelson.Google Scholar
Nomura, T., Inoue, Y., Mitani, H., et al. (2003). Visual hallucinations as REM sleep behavior disorders in patients with Parkinson’s disease. Movement Disorders, 18 (7), 812–17.CrossRefGoogle ScholarPubMed
Ossenkoppele, R., Jansen, W. J., Rabinovici, G. D., et al. (2015). Prevalence of amyloid PET positivity in dementia syndromes: A meta-analysis. JAMA, 313 (19), 1939–50.CrossRefGoogle ScholarPubMed
Parkinson’s UK (2018). The incidence and prevalence of Parkinson’s in the UK Results from the Clinical Practice Research Datalink Summary report. www.parkinsons.org.uk/sites/default/files/2018-01/CS2960%20Incidence%20and%20prevalence%20report%20branding%20summary%20report.pdf.Google Scholar
Phongpreecha, T., Cholerton, B., Mata, I. F., et al. (2020). Multivariate prediction of dementia in Parkinson’s disease. NPJ Parkinson’s Disease, 6 (1), 110.Google ScholarPubMed
Pillon, B., Deweer, B., Agid, Y., & Dubois, B. (1993). Explicit memory in Alzheimer’s, Huntington’s, and Parkinson’s diseases. Archives of Neurology, 50 (4), 374–79.CrossRefGoogle ScholarPubMed
Pirozzolo, F. J., Hansch, E. C., Mortimer, J. A., Webster, D. D., & Kuskowski, M. A. (1982). Dementia in Parkinson disease: A neuropsychological analysis. Brain and Cognition, 1 (1), 7183.CrossRefGoogle ScholarPubMed
Pagano, G., Niccolini, F., & Politis, M. (2016). Imaging in Parkinson’s disease. Clinical Medicine, 16 (4), 371.CrossRefGoogle ScholarPubMed
Postuma, R. B., Berg, D., Stern, M., et al. (2015). MDS clinical diagnostic criteria for Parkinson’s disease. Movement disorders, 30 (12), 1591–601.CrossRefGoogle ScholarPubMed
Postuma, R. B., Berg, D., Adler, C. H., et al. (2016). The new definition and diagnostic criteria of Parkinson’s disease. The Lancet Neurology, 15 (6), 546–8.CrossRefGoogle ScholarPubMed
Potashkin, J. A., Santiago, J. A., Ravina, B. M., Watts, A., & Leontovich, A. A. (2012). Biosignatures for Parkinson’s disease and atypical Parkinsonian disorders patients. PLoS ONE 7(8), e43595. https://doi.org/10.1371/journal.pone.0043595.CrossRefGoogle ScholarPubMed
Palavra, N. C., Naismith, S. L., & Lewis, S. J. (2013). Mild cognitive impairment in Parkinson’s disease: A review of current concepts. Neurology Research International, 2013. 576091. https://doi.org/10.1155/2013/576091.CrossRefGoogle Scholar
Ruffmann, C., Calboli, F. C., Bravi, I., et al. (2016). Cortical Lewy bodies and Aβ burden are associated with prevalence and timing of dementia in Lewy body diseases. Neuropathology and Applied Neurobiology, 42 (5), 436–50.CrossRefGoogle ScholarPubMed
Sadiq, D., Whitfield, T., Lee, L., et al. (2017). Prodromal dementia with Lewy bodies and prodromal Alzheimer’s disease: A comparison of the cognitive and clinical profiles. Journal of Alzheimer’s Disease, 58 (2), 463–70.Google ScholarPubMed
Saeed, U., Lang, A. E., & Masellis, M. (2020). Neuroimaging advances in Parkinson’s disease and atypical Parkinsonian syndromes. Frontiers in Neurology, 1189.CrossRefGoogle Scholar
Salthouse, O., Bradshaw, J., & Saling, M. (2019). Dementia with Lewy bodies. In Hocking, D., Bradshaw, J., & Fielding, J. (Eds.), Degenerative Disorders of the Brain (pp. 186–98). Oxford: Routledge.Google Scholar
Savica, R., Grossardt, B. R., Bower, J. H., et al. (2013). Incidence of dementia with Lewy bodies and Parkinson disease dementia. JAMA Neurology, 70 (11), 1396–402.CrossRefGoogle ScholarPubMed
Schoenberg, M., & Duff, K. (2011). Dementias and mild cognitive impairment in adults. In Schoenberg, M. & Scott, J. (Eds), The Little Black Book of Neuropsychology (pp. 357404). London; Springer.CrossRefGoogle Scholar
Sekiya, H., Koga, S., Otsuka, Y., et al. (2022). Clinical and pathological characteristics of later onset multiple system atrophy. Journal of Neurology, 269, 4310–21.CrossRefGoogle ScholarPubMed
Schadlu, A. P., Schadlu, R., & ShepherdIII, J. B. (2009). Charles Bonnet syndrome: A review. Current Opinion in Ophthalmology, 20(3), 219–22.CrossRefGoogle ScholarPubMed
Stanford, P. M., Halliday, G. M., Brooks, W. S., et al. (2000). Progressive supranuclear palsy pathology caused by a novel silent mutation in exon 10 of the tau gene: Expansion of the disease phenotype caused by tau gene mutations. Brain, 123 (5), 880–93.CrossRefGoogle ScholarPubMed
Stankovic, I., Krismer, F., Jesic, A., et al. (2014). Cognitive impairment in multiple system atrophy: A position statement by the Neuropsychology Task Force of the MDS Multiple System Atrophy (MODIMSA) study group. Movement Disorders, 29 (7), 857–67.CrossRefGoogle ScholarPubMed
Takao, M., Ghetti, B., Yoshida, H., et al. (2004). Early‐onset dementia with Lewy bodies. Brain Pathology, 14 (2), 137–47.CrossRefGoogle ScholarPubMed
Van Rooden, S. M., Heiser, W. J., Kok, J. N., et al. (2010). The identification of Parkinson’s disease subtypes using cluster analysis: a systematic review. Movement Disorders, 25(8), 969–78.CrossRefGoogle ScholarPubMed
Vasconcellos, L. F. R., & Pereira, J. S. (2015). Parkinson’s disease dementia: Diagnostic criteria and risk factor review. Journal of Clinical and Experimental Neuropsychology, 37 (9), 988–93.CrossRefGoogle ScholarPubMed
Vergouw, L. J., van Steenoven, I., van de Berg, W. D., et al. (2017). An update on the genetics of dementia with Lewy bodies. Parkinsonism & Related Disorders, 43, 18.CrossRefGoogle ScholarPubMed
Walker, L., Stefanis, L., & Attems, J. (2019). Clinical and neuropathological differences between Parkinson’s disease, Parkinson’s disease dementia and dementia with Lewy bodies – Current issues and future directions. Journal of Neurochemistry, 150 (5), 467–74.CrossRefGoogle ScholarPubMed
Wenning, G. K., Litvan, I., Jankovic, J., et al. (1998). Natural history and survival of 14 patients with corticobasal degeneration confirmed at postmortem examination. Journal of Neurology, Neurosurgery, and Psychiatry, 4, 184–9.Google Scholar
Wenning, G. K., Stankovic, I., Vignatelli, L., et al. (2022). The movement disorder society criteria for the diagnosis of multiple system atrophy. Movement Disorders, 37 (6), 1131–48.CrossRefGoogle ScholarPubMed
Williams, M. M., Xiong, C., Morris, J. C., & Galvin, J. E. (2006). Survival and mortality differences between dementia with Lewy bodies vs Alzheimer disease. Neurology, 67 (11), 1935–41.CrossRefGoogle ScholarPubMed
Williams-Gray, C. H., Evans, J. R., Goris, A., et al. (2009). The distinct cognitive syndromes of Parkinson’s disease: 5 year follow-up of the CamPaIGN cohort. Brain, 132(11), 2958–69.CrossRefGoogle ScholarPubMed
Williams-Gray, C. H., Mason, S. L., Evans, J. R., et al. (2013). The CamPaIGN study of Parkinson’s disease: 10-year outlook in an incident population-based cohort. Journal of Neurology, Neurosurgery & Psychiatry, 84 (11), 1258–64.CrossRefGoogle Scholar
Wu, T., Kansaku, K., & Hallett, M. (2004). How self-initiated memorized movements become automatic: A functional MRI study. Journal of Neurophysiology, 91 (4), 1690–8.CrossRefGoogle ScholarPubMed
Yip, A. G., Brayne, C., & Matthews, F. E. (2006). Risk factors for incident dementia in England and Wales: The Medical Research Council Cognitive Function and Ageing Study. A population-based nested case-control study. Age and Ageing, 35 (2), 154–60.CrossRefGoogle ScholarPubMed
Zaccai, J., McCracken, C., & Brayne, C. (2005). A systematic review of prevalence and incidence studies of dementia with Lewy bodies. Age and Ageing, 34 (6), 561–6.CrossRefGoogle ScholarPubMed

References

Alexander, G. E. (1994). Basal ganglia-thalamocortical circuits: Their role in control of movements. Journal of Clinical Neurophysiology: Official Publication of the American Electroencephalographic Society, 11 (4), 420–31.CrossRefGoogle ScholarPubMed
Alexander, G. E., & Crutcher, M. D. (1990). Functional architecture of basal ganglia circuits: Neural substrates of parallel processing. Trends in Neurosciences, 13 (7), 266–71.CrossRefGoogle ScholarPubMed
Astington, J. W., & Jenkins, J. M. (1999). A longitudinal study of the relation between language and theory-of-mind development. Developmental Psychology, 35 (5), 1311.CrossRefGoogle ScholarPubMed
Baron-Cohen, S. (1997). Mindblindness: An Essay on Autism and Theory of Mind. Cambridge, MA: MIT Press.Google Scholar
Bird, T., Knopman, D., VanSwieten, J., et al. (2003). Epidemiology and genetics of frontotemporal dementia/Pick’s disease. Annals of Neurology, 54, S29S31.CrossRefGoogle ScholarPubMed
Bonelli, R. M., & Cummings, J. L. (2007). Frontal-striatal circuitry and behaviour. Dialogues in Clinical Neuroscience, 9 (2), 141–51.CrossRefGoogle Scholar
Bora, E., Velakoulis, D., & Walterfang, M. (2016). Meta-analysis of facial emotion recognition in behavioral variant frontotemporal dementia: Comparison with Alzheimer disease and healthy controls. Journal of Geriatric Psychiatry and Neurology, 29 (4), 205–11.CrossRefGoogle ScholarPubMed
Broe, M., Hodges, J. R., Schofield, E., et al. (2003). Staging disease severity in pathologically confirmed cases of frontotemporal dementia. Neurology, 60 (6), 1005–11.CrossRefGoogle ScholarPubMed
Brun, A. (1993). Frontal lobe degeneration of non-Alzheimer type revisited. Dementia, 4, 126–31.Google Scholar
Cicerone, K. D., & Tanenbaum, L. N. (1997). Disturbance of social cognition after traumatic orbitofrontal brain injury. Archives of Clinical Neuropsychology, 12 (2), 173–88.CrossRefGoogle ScholarPubMed
Coyle-Gilchrist, I. T., Dick, K. M., Patterson, K., et al. (2016). Prevalence, characteristics, and survival of frontotemporal lobar degeneration syndromes. Neurology, 86 (18), 1736–43.CrossRefGoogle ScholarPubMed
Duff, K., Paulsen, J. S., Beglinger, L. J., et al. (2010). ‘Frontal’ behaviors before the diagnosis of Huntington’s disease and their relationship to markers of disease progression: Evidence of early lack of awareness. The Journal of Neuropsychiatry and Clinical Neurosciences, 22 (2), 196207.CrossRefGoogle ScholarPubMed
Eid, H. R., Rosness, T. A., Bosnes, O., et al. (2019). Smoking and obesity as risk factors in frontotemporal dementia and Alzheimer’s disease: The HUNT Study. Dementia and Geriatric Cognitive Disorders Extra, 9 (1), 110.Google Scholar
Ekman, P., & Friesen, W. V. (1976). Pictures of Facial Affect. Palo Alto: Consulting Psychologists Press.Google Scholar
Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). ‘Mini-mental state’: A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12 (3), 189–98.Google Scholar
Goldman, J. S., Farmer, J. M., Wood, E. M., et al. (2005). Comparison of family histories in FTLD subtypes and related tauopathies. Neurology, 65 (11), 1817–19.CrossRefGoogle ScholarPubMed
Goodglass, H., Kaplan, E., & Barresi, B. (2001). Boston Diagnostic Aphasia Examination. 3rd ed. Baltimore: Lippincott, Williams & Wilkins.Google Scholar
Gorno‐Tempini, M. L., Dronkers, N. F., Rankin, K. P., et al. (2004). Cognition and anatomy in three variants of primary progressive aphasia. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society, 55(3), 335–46.CrossRefGoogle ScholarPubMed
Gorno-Tempini, M. L., Hillis, A. E., Weintraub, S., et al. (2011). Classification of primary progressive aphasia and its variants. Neurology, 76 (11), 1006–14.CrossRefGoogle ScholarPubMed
Hodges, J. R., Davies, R., Xuereb, J., Kril, J., & Halliday, G. (2003). Survival in frontotemporal dementia. Neurology, 61 (3), 349–54.CrossRefGoogle ScholarPubMed
Hodges, J. R., Patterson, K., Oxbury, S., & Funnell, E. (1992). Semantic dementia: progressive fluent aphasia with temporal lobe atrophy. Brain, 115, 1783–806.CrossRefGoogle ScholarPubMed
Howard, D., & Patterson, K. (1992). The Pyramids and Palm Trees: A test of Semantic Access from Pictures and Words. Bury St Edmunds: Thames Valley Test Company.Google Scholar
Josephs, K. A., Petersen, R. C., Knopman, D. S., et al. (2006). Clinicopathologic analysis of frontotemporal and corticobasal degenerations and PSP. Neurology, 66 (1), 41–8.CrossRefGoogle ScholarPubMed
Josephs, K. A., Whitwell, J. L., Knopman, D. S., et al. (2009). Two distinct subtypes of right temporal variant frontotemporal dementia. Neurology, 73 (18), 1443–50.CrossRefGoogle ScholarPubMed
Kalkonde, Y. V., Jawaid, A., Qureshi, S. U., et al. (2012). Medical and environmental risk factors associated with frontotemporal dementia: A case-control study in a veteran population. Alzheimer’s & Dementia, 8 (3), 204–10.CrossRefGoogle Scholar
Kaplan, E., Goodglass, H., & Weintraub, S. (1983). Boston Naming Test. Philadelphia: Lea & Febiger.Google Scholar
Kay, J., Coltheart, M., & Lesser, R. (1992). PALPA: Psycholinguistic Assessments of Language Processing in Aphasia. New York: Psychology Press.Google Scholar
Keane, J., Calder, A. J., Hodges, J. R., & Young, A. W. (2002). Face and emotion processing in frontal variant frontotemporal dementia. Neuropsychologia, 40 (6), 655–65.CrossRefGoogle ScholarPubMed
Kertesz, A., Davidson, W, & Fox, H. (1997). Frontal behavioral inventory: Diagnostic criteria for frontal lobe dementia. Canadian Journal of Neurological Sciences, 24, 2936.CrossRefGoogle ScholarPubMed
Kipps, C. M., Hodges, J. R., & Hornberger, M. (2010). Nonprogressive behavioural frontotemporal dementia: Recent developments and clinical implications of the ‘bvFTD phenocopy syndrome’. Current Opinion in Neurology, 23 (6), 628–32.CrossRefGoogle ScholarPubMed
Kipps, C. M., Nestor, P. J., Acosta-Cabronero, J., Arnold, R., & Hodges, J. R. (2009). Understanding social dysfunction in the behavioural variant of frontotemporal dementia: The role of emotion and sarcasm processing. Brain, 132(3), 592603.CrossRefGoogle ScholarPubMed
Knopman, D. S., & Roberts, R. O. (2011). Estimating the number of persons with frontotemporal lobar degeneration in the US population. Journal of Molecular Neuroscience, 45, 330–5.CrossRefGoogle ScholarPubMed
Krueger, C. E., Dean, D. L., Rosen, H. J., et al. (2010). Longitudinal rates of lobar atrophy in frontotemporal dementia, semantic dementia, and Alzheimer’s disease. Alzheimer Disease & Associated Disorders, 24 (1), 43–8.CrossRefGoogle ScholarPubMed
Lanata, S. C., & Miller, B. L. (2016). The behavioural variant frontotemporal dementia (bvFTD) syndrome in psychiatry. Journal of Neurology, Neurosurgery & Psychiatry, 87(5), 501–11.CrossRefGoogle ScholarPubMed
Leyton, C. E., Ballard, K. J., Piguet, O., & Hodges, J. R. (2014a). Phonologic errors as a clinical marker of the logopenic variant of PPA. Neurology, 82 (18), 1620–7.CrossRefGoogle ScholarPubMed
Leyton, C. E., Savage, S., Irish, M., et al. (2014b). Verbal repetition in primary progressive aphasia and Alzheimer’s disease. Journal of Alzheimer’s Disease, 41 (2), 575–85.Google ScholarPubMed
Lichter, D. G., & Cummings, J. L. (2001). Introduction and overview. In Lichter, D. G, & Cummings, J. L. (Eds.). Frontal-Subcortical Circuits in Psychiatric and Neurological Disorders (pp. 143). Guilford Press.Google Scholar
Lomen-Hoerth, C. (2011). Clinical phenomenology and neuroimaging correlates in ALS-FTD. Journal of Molecular Neuroscience, 45 (3), 656–62.CrossRefGoogle ScholarPubMed
Mackenzie, I. R., & Neumann, M. (2016). Molecular neuropathology of frontotemporal dementia: insights into disease mechanisms from postmortem studies. Journal of Neurochemistry, 138, 5470.CrossRefGoogle ScholarPubMed
Mackenzie, I. R., Neumann, M., Baborie, A., et al. (2011). A harmonized classification system for FTLD-TDP pathology. Acta Neuropathologica, 122 (1), 111–13.CrossRefGoogle ScholarPubMed
Marshall, C. R., Hardy, C. J., Volkmer, A., et al. (2018). Primary progressive aphasia: A clinical approach. Journal of Neurology, 265 (6), 1474–90.CrossRefGoogle ScholarPubMed
Mathuranath, P. S., Nestor, P. J., Berrios, G. E., Rakowicz, W., & Hodges, J. R. (2000). A brief cognitive test battery to differentiate Alzheimer’s disease and frontotemporal dementia. Neurology, 55(11), 1613–20.CrossRefGoogle ScholarPubMed
McDonald, S., Flanagan, S., Rollins, J., & Kinch, J. (2003). TASIT: A new clinical tool for assessing social perception after traumatic brain injury. Journal of Head Injury Trauma Rehabilitation, 18, 219–38.Google ScholarPubMed
Mesulam, M. (1982). Slowly progressive aphasia without generalised dementia. Annals of Neurology, 11, 592–98.CrossRefGoogle ScholarPubMed
Mesulam, M. M. (2001). Primary progressive aphasia. Annals of Neurology, 49 (4), 425–32.CrossRefGoogle ScholarPubMed
Neary, D., Snowden, J. S., Gustafson, L., et al. (1998). Frontotemporal lobar degeneration: A consensus on clinical diagnostic criteria. Neurology, 51 (6), 1546–54.CrossRefGoogle ScholarPubMed
Neumann, M., Rademakers, R., Roeber, S., et al. (2009). A new subtype of frontotemporal lobar degeneration with FUS pathology. Brain, 132(11), 2922–31.CrossRefGoogle ScholarPubMed
Nunnemann, S., Last, D., Schuster, T., Förstl, H., Kurz, A., & Diehl-Schmid, J. (2011). Survival in a German population with frontotemporal lobar degeneration. Neuroepidemiology, 37 (3–4), 160–5.CrossRefGoogle Scholar
Onyike, C. U., & Diehl-Schmid, J. (2013). The epidemiology of frontotemporal dementia. International Review of Psychiatry, 25 (2), 130–7.Google ScholarPubMed
Perry, R. J., Graham, A., Williams, G., et al. (2006). Patterns of frontal lobe atrophy in frontotemporal dementia: A volumetric MRI study. Dementia and Geriatric Cognitive Disorders, 22 (4), 278–87.CrossRefGoogle ScholarPubMed
Pick, A. (1892). Ueber die Beziehungen der senilen Hirnatrophie zur Aphasie. Prager Med Wochenschr, 17, 165–7.Google Scholar
Poos, J. M., Jiskoot, L. C., Leijdesdorff, S. M. J., et al. (2020). Cognitive profiles discriminate between genetic variants of behavioral frontotemporal dementia. Journal of Neurology, 267 (6), 1603–12.Google ScholarPubMed
Premack, D., & Woodruff, G. (1978). Does the chimpanzee have a theory of mind? Behavioral and Brain Sciences, 1(4), 515–26.CrossRefGoogle Scholar
Rabin, L. A., Barr, W. B., & Burton, L. A. (2005). Assessment practices of clinical neuropsychologists in the United States and Canada: A survey of INS, NAN, and APA Division 40 members. Archives of Clinical Neuropsychology, 20 (1), 3365.CrossRefGoogle Scholar
Ramos, E. M., Dokuru, D. R., Van Berlo, V., et al. (2019). Genetic screen in a large series of patients with primary progressive aphasia. Alzheimer’s & Dementia, 15 (4), 553–60.CrossRefGoogle Scholar
Rascovsky, K., & Grossman, M. (2013). Clinical diagnostic criteria and classification controversies in frontotemporal lobar degeneration. International Review of Psychiatry, 25 (2), 145–58.CrossRefGoogle ScholarPubMed
Rascovsky, K., Hodges, J. R., Knopman, D., et al. (2011). Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain, 134 (9), 2456–77.CrossRefGoogle ScholarPubMed
Rasmussen, H., Rosness, T. A., Bosnes, O., et al. (2018). Anxiety and depression as risk factors in frontotemporal dementia and Alzheimer’s disease: The HUNT study. Dementia and Geriatric Cognitive Disorders Extra, 8 (3), 414–25.CrossRefGoogle ScholarPubMed
Ratnavalli, E., Brayne, C., Dawson, K., & Hodges, J. R. (2002). The prevalence of frontotemporal dementia. Neurology, 58 (11), 1615–21.CrossRefGoogle ScholarPubMed
Roberson, E. D., Hesse, J. H., Rose, K. D., et al. (2005). Frontotemporal dementia progresses to death faster than Alzheimer disease. Neurology, 65 (5), 719–25.CrossRefGoogle ScholarPubMed
Rogalski, E. J., Rademaker, A., Wieneke, C., et al. (2014). Association between the prevalence of learning disabilities and primary progressive aphasia. JAMA Neurology, 71 (12), 1576–7.CrossRefGoogle ScholarPubMed
Rogalski, E., Cobia, D., Harrison, T. M., et al. (2011). Progression of language decline and cortical atrophy in subtypes of primary progressive aphasia. Neurology, 76 (21), 1804–10.CrossRefGoogle ScholarPubMed
Roman Meller, M., Patel, S., Duarte, D., Kapczinski, F., & de Azevedo Cardoso, T. (2021). Bipolar disorder and frontotemporal dementia: A systematic review. Acta Psychiatrica Scandinavica, 144 (5), 433–47.CrossRefGoogle ScholarPubMed
Rosso, S. M., Van Swieten, J. C., Roks, G., et al. (2002). Apolipoprotein E4 in the temporal variant of frontotemporal dementia. Journal of Neurology, Neurosurgery & Psychiatry, 72 (6), 820.CrossRefGoogle ScholarPubMed
Savage, S., Hsieh, S., Leslie, F., et al. (2013). Distinguishing subtypes in primary progressive aphasia: application of the Sydney language battery. Dementia and Geriatric Cognitive Disorders, 35 (3–4), 208–18.CrossRefGoogle ScholarPubMed
Schoder, D., Hannequin, D., Martinaud, O., et al. (2010). Morbid risk for schizophrenia in first-degree relatives of people with frontotemporal dementia. The British Journal of Psychiatry, 197(1), 2835.CrossRefGoogle ScholarPubMed
Snowden, J. S., Goulding, P. J., & Neary, D. (1989). Semantic dementia: A form of circumscribed cerebral atrophy. Behavioural Neurology, 2, 167–82.CrossRefGoogle Scholar
Spinelli, E. G., Mandelli, M. L., Miller, Z. A., et al. (2017). Typical and atypical pathology in primary progressive aphasia variants. Annals of Neurology, 81 (3), 430–43.CrossRefGoogle ScholarPubMed
Swartz, J. R., Miller, B. L., Lesser, I. M., & Darby, A. L. (1997). Frontotemporal dementia: Treatment response to serotonin selective reuptake inhibitors. Journal of Clinical Psychiatry, 58 (5), 212–17.Google ScholarPubMed
Ulugut, H., Stek, S., Wagemans, L. E., et al. (2022). The natural history of primary progressive aphasia: Beyond aphasia. Journal of Nneurology, 269 (3), 1375–85.Google ScholarPubMed
Utianski, R. L., Botha, H., Martin, P. R., et al. (2019). Clinical and neuroimaging characteristics of clinically unclassifiable primary progressive aphasia. Brain and Language, 197, 104676.CrossRefGoogle ScholarPubMed
Walker, A. J., Meares, S., Sachdev, P. S., & Brodaty, H. (2005). The differentiation of mild frontotemporal dementia from Alzheimer’s disease and healthy aging by neuropsychological tests. International Psychogeriatrics, 17 (1), 5768.CrossRefGoogle ScholarPubMed
Warrington, E. K. (1975). Selective impairment of semantic memory. (1975) Quarterly Journal of Experimental Psychology, 27, 635–57.CrossRefGoogle ScholarPubMed
Woolley, J. D., Khan, B. K., Murthy, , et al. (2011). The diagnostic challenge of psychiatric symptoms in neurodegenerative disease: rates of and risk factors for prior psychiatric diagnosis in patients with early neurodegenerative disease. The Journal of Clinical Psychiatry, 72 (2), 126–33.CrossRefGoogle ScholarPubMed

References

Albert, M. S., Butters, N., & Levin, J. (1979). Temporal gradients in the retrograde amnesia of patients with alcoholic Korsakoff’s disease. Archives of Neurology, 36(4), 211–16.CrossRefGoogle ScholarPubMed
Arts, N., Walvoort, S., & Kessels, R. (2017). Korsakoff’s syndrome: A critical review. Neuropsychiatric Disease and Treatment, 13, 2875–90.CrossRefGoogle ScholarPubMed
Bonhoeffer, K. (1901). Die Akuten Geisteskrankheiten Der Gewohnheitstrinker. Jena: Fischer.Google Scholar
Borsutzky, S., Fujiwara, E., Brand, M., & Markowitsch, H. J. (2008). Confabulations in alcoholic Korsakoff patients. Neuropsychologia, 46(13), 3133–43.CrossRefGoogle ScholarPubMed
Brion, M., Pitel, A. L., Beaunieux, H., & Maurage, P. (2014). Revisiting the continuum hypothesis: Toward an in-depth exploration of executive functions in Korsakoff syndrome. Frontiers of Human Neuroscience, 8, 17.CrossRefGoogle ScholarPubMed
Brooks, D. N., & Baddeley, A. D. (1976). What can amnesic patients learn? Neuropsychologia, 14, 111–22.CrossRefGoogle ScholarPubMed
Butters, N., & Brandt, J. (1985). The continuity hypothesis: The relationship of long-term alcoholism to the Wernicke–Korsakoff syndrome. Recent Developments in Alcoholism, 3, 207–26.CrossRefGoogle Scholar
Caine, D., Halliday, G. M., Kril, J. J., & Harper, C. G. (1997). Operational criteria for the classification of chronic alcoholics: Identification of Wernicke’s encephalopathy. Journal of Neurology, Neurosurgery and Psychiatry, 62(1), 5160.CrossRefGoogle ScholarPubMed
Cunningham, J. M., Pliskin, N. H., Cassisi, J. E., Tsang, B., & Rao, S. M. (1997) Relationship between confabulation and measures of memory and executive function. Journal of Clinical and Experimental Neuropsychology, 19(6), 867–77.CrossRefGoogle ScholarPubMed
Draper, B., Karmel, R., Gibson, D., Peut, A., & Anderson, P. (2011). Alcohol-related cognitive impairment in New South Wales hospital patients aged 50 years and over. The Australian and New Zealand Journal of Psychiatry, 45(11), 985–92.CrossRefGoogle ScholarPubMed
Fama, R., Pitel, A. L. & Sullivan, E. V. (2012). Anterograde episodic memory in Korsakoff syndrome. Neuropsychological Review, 22(2), 93104.CrossRefGoogle ScholarPubMed
Fujiwara, E., Brand, M., Borsutzky, S., Steingass, H.-P., & Markowitsch, H. J. (2008). Cognitive performance of detoxified alcoholic Korsakoff syndrome patients remains stable over two years. Journal of Clinical and Experimental Neuropsychology, 30, 576–87.CrossRefGoogle ScholarPubMed
Galvin, R., Brathen, G., Ivashynka, A., et al. (2010). EFNS guidelines for diagnosis, therapy and prevention of Wernicke encephalopathy. European Journal of Neurology, 17(12), 1408–18.CrossRefGoogle ScholarPubMed
Gerridzen, I. J., Moerman-van den Brink, W. G., Depla, M. F., et al. (2017). Prevalence and severity of behavioural symptoms in patients with Korsakoff syndrome and other alcohol-related cognitive disorders: A systematic review. International Journal of Geriatric Psychiatry, 32(3), 256–73.CrossRefGoogle ScholarPubMed
Gilchrist, G., & Morrison, G. S. (2005). Prevalence of alcohol related brain damage among homeless hostel dwellers in Glasgow, European Journal of Public Health, 15(6), 587–8.CrossRefGoogle ScholarPubMed
Harding, A. J., Wong, A., Svoboda, M., Kril, J. J., & Halliday, G. M. (1997). Chronic alcohol consumption does not cause hippocampal neuron loss in humans. Hippocampus, 7, 7887.3.0.CO;2-3>CrossRefGoogle Scholar
Harper, C., & Kril, J. (1994). An introduction to alcohol-induced brain damage and its causes. Alcohol and Alcoholism. Supplement, 2, 237–43.Google ScholarPubMed
Harper, C. G., Giles, M., & Finlay-Jones, R. (1986). Clinical signs in the Wernicke–Korsakoff complex: A retrospective analysis of 131 cases diagnosed at necropsy. Journal of Neurology, Neurosurgery, & Psychiatry, 49, 341–5.CrossRefGoogle ScholarPubMed
Harvey, R. J., Skelton-Robinson, M., & Rossor, M. N. (2003). The prevalence and causes of dementia in people under the age of 65 years. Journal of Neurology, Neurosurgery, and Psychiatry, 74(9), 1206–9.CrossRefGoogle ScholarPubMed
Jacobson, R. R., & Lishman, W. A. (1990). Cortical and diencephalic lesions in Korsakoff’s syndrome: a clinical and scan study. Psychological Medicine, 20, 63.CrossRefGoogle ScholarPubMed
Kopelman, M. D. (1995). The Korsakoff syndrome. British Journal of Psychiatry, 166(2), 154–73.CrossRefGoogle ScholarPubMed
Korsakoff, S. S. (1887). Ob alkogol’nom paraliche [Disturbance of psychic function in alcoholic paralysis and its relation to the disturbance of the psychic sphere in multiple neuritis of nonalcoholic origin]. Vestn Psikhiatrii, 4(2), 1102.Google Scholar
Kril, J. J., & Harper, C. G. (2012). Neuroanatomy and neuropathology associated with Korsakoff’s syndrome. Neuropsychological Review, 22(2), 7280.CrossRefGoogle ScholarPubMed
Malamud, N., & Skillicorn, S. A. (1956). Relationship between the Wernicke and the Korsakoff syndrome. Archives of Neurology and Psychiatry, 76, 585–96.Google ScholarPubMed
Moerman-Van Den Brink, W. G., Van Aken, L., Verschuur, E. M. L., et al. (2019). Executive dysfunction in patients with Korsakoff’s syndrome: A theory-driven approach. Alcohol and Alcoholism, 54(1), 23–9.CrossRefGoogle ScholarPubMed
Nikolakaros, G., Ilonen, T., Kurki, T., et al. (2016). Non-alcoholic Korsakoff syndrome in psychiatric patients with a history of undiagnosed Wernicke’s encephalopathy. Journal of the Neurological Sciences, 370, 296302.CrossRefGoogle ScholarPubMed
Periera, R. B., Andrade, P. B., & Valentao, P. (2015). A comprehensive view of the neurotoxicity of the neurotoxicity mechanisms of cocaine and ethanol. Neurotoxicity Research, 28, 253–67.Google Scholar
Postma, A., Van Asselen, M., Keuper, O., Wester, A., & Kessels, R. (2006). Spatial and temporal order memory in Korsakoff patients. Journal of the International Neuropsychological Society, 12(3), 327–36.CrossRefGoogle ScholarPubMed
Rensen, Y. C., Oosterman, J. M., Walvoort, S. J., Eling, P. A., & Kessels, R. P. (2017). Intrusions and provoked and spontaneous confabulations on memory tests in Korsakoff’s syndrome. Journal of Clinical and Experimental Neuropsychology, 39(2), 101–11.CrossRefGoogle ScholarPubMed
Ritchie, K., & Villebrun, D. (2008). Epidemiology of alcohol-related dementia. Handbook of Clinical Neurology, 89, 845–50.CrossRefGoogle ScholarPubMed
Ryback, R. S. (1971). The continuum and specificity of the effects of alcohol on memory. A review. Quarterly Journal for Studies on Alcohol, 32(4), 9951016.CrossRefGoogle ScholarPubMed
Sachdeva, A., Chandra, M., Choudhary, M., Dayal, P., & Anand, K. S. (2016). Alcohol-related dementia and neurocognitive impairment: A review study. International Journal of High Risk Behaviors & Addiction, 5(3), e27976.CrossRefGoogle ScholarPubMed
Scalzo, S. J., Bowden, S. C., Ambrose, M. L., Whelan, G., & Cook, M. J. (2015). Wernicke–Korsakoff syndrome not related to alcohol use: A systematic review. Journal of Neurology, Neurosurgery and Psychiatry, 86(12), 1362–8.Google Scholar
Seltzer, B., & Benson, D. F. (1974). The temporal pattern of retrograde amnesia in Korsakoff’s disease. Neurology, 26(6), 527–30.Google Scholar
Smith, J. S., & Kiloh, L. G. (1981). The investigation of dementia: Results in 200 consecutive admissions. Lancet, 1(8224), 824–7.Google ScholarPubMed
Stavro, K., Pelletier, J., & Potvin, S. (2013). Widespread and sustained cognitive deficits in alcoholism: A meta-analysis. Addiction Biology, 18(2), 203–13.CrossRefGoogle ScholarPubMed
Talland, G. A. (1965). Deranged memory: A psychonomic study of the amnesic syndrome. New York: Academic.Google Scholar
Thomson, A. D., Guerrini, I., & Marshall, E. J. (2012). The evolution and treatment of Korsakoff’s syndrome: Out of sight, out of mind? Neuropsychological Review, 22, 8192.CrossRefGoogle Scholar
Van Damme, I., & d’Ydewalle, G. (2010). Confabulation versus experimentally induced false memories in Korsakoff patients. Journal of Neuropsychology, 4(2), 211–30.CrossRefGoogle ScholarPubMed
Van Oort, R., & Kessels, R. P. C. (2009). Executive dysfunction in Korsakoff’s syndome: time to revise the DSM criteria for alcohol-induced persisting amnestic disorder? International Journal of Psychiatry in Clinical Practice, 13(1), 7881.CrossRefGoogle Scholar
Verfaellie, M., Milberg, W. P., Cermak, L. S., & Letourneau, L. L. (1992). Priming of spatial configurations in alcoholic Korsakoff’s amnesia. Brain and Cognition, 18(1), 3445.CrossRefGoogle ScholarPubMed
Victor, M., Adams, R. D., & Collins, G. H. (1989). The Wernicke–Korsakoff Syndrome and related Neurological Disorders of Alcoholism and Malnutrition. Philadelphia: FA Davis Co.Google Scholar
Wernicke, C. (1881). Lehrbuch Der Gehirnkrankheiten Für Aerzte Und Studirende, Band II. Kassel: Fischer.Google Scholar
Wijnia, J. W. (2022). A Clinician’s View of Wernicke–Korsakoff Syndrome. Journal of Clinical Medicine, 11(22), 6755.CrossRefGoogle ScholarPubMed
Wijnia, J. W., Oudman, E., van Gool, W. A., et al. (2016). Severe infections are common in thiamine deficiency and may be related to cognitive outcomes: a cohort study of 68 patients with Wernicke–Korsakoff syndrome. Psychosomatics, 57(6), 624633.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×