Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-24T03:32:49.619Z Has data issue: false hasContentIssue false

Chapter 16 - Prognostication in the Complications of Neurosurgical Procedures

from Part I - Disease-Specific Prognostication

Published online by Cambridge University Press:  14 November 2024

David M. Greer
Affiliation:
Boston University School of Medicine and Boston Medical Center
Neha S. Dangayach
Affiliation:
Icahn School of Medicine at Mount Sinai and Mount Sinai Health System
Get access

Summary

There are many central nervous system (CNS) pathologies that are managed in the neurointensive care unit. Neurocritical patients are a diverse group with vastly different presentations, management, expected duration of their clinical course, and disease-related long-term outcomes. Clinical entities include traumatic brain injury (TBI), ischemic stroke, aneurysmal subarachnoid hemorrhage (aSAH), intraparenchymal hemorrhages (ICH), spinal cord injury (SCI), brain tumors, postoperative craniotomy patients, and nonsurgical diseases, such as myasthenia gravis, Guillain–Barré syndrome, and CNS infections (meningitis and encephalitis).

There are a variety of bedside neurosurgical and neurocritical care procedures that may be required to provide care and mitigate the effects of primary neurologic pathology and to improve outcomes. Despite the many advances in neurosurgical and neurocritical care in that last several decades, complications from these procedures, while generally rare, still can occur (Table 16.1).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

National Neurosurgical Procedural Statistics: American Association of Neurological Surgeons (AANS) Survey, 2006.Google Scholar
Carney, N, Totten, AM, O’Reilly, C, et al. Guidelines for the Management of Severe Traumatic Brain Injury, Fourth Edition. Neurosurgery. 2017;80(1):615.CrossRefGoogle ScholarPubMed
Nwachuku, EL, Puccio, AM, Fetzick, A, et al. Intermittent versus continuous cerebrospinal fluid drainage management in adult severe traumatic brain injury: assessment of intracranial pressure burden. Neurocrit Care. 2014;20(1):4953.CrossRefGoogle ScholarPubMed
Connolly, ES Jr, Rabinstein, AA, Carhuapoma, JR, et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2012;43(6):1711–37.CrossRefGoogle ScholarPubMed
Khan, SH, Kureshi, IU, Mulgrew, T, Ho, SY, Onyiuke, HC. Comparison of percutaneous ventriculostomies and intraparenchymal monitor: a retrospective evaluation of 156 patients. Acta Neurochir Suppl. 1998;71:50–2.Google ScholarPubMed
Liu, H, Wang, W, Cheng, F, et al. External ventricular drains versus intraparenchymal intracranial pressure monitors in traumatic brain injury: a prospective observational study. World Neurosurg. 2015;83(5):794800.CrossRefGoogle ScholarPubMed
Tavakoli, S, Peitz, G, Ares, W, Hafeez, S, Grandhi, R. Complications of invasive intracranial pressure monitoring devices in neurocritical care. Neurosurg Focus. 2017;43(5):E6.CrossRefGoogle ScholarPubMed
Kakarla, UK, Kim, LJ, Chang, SW, Theodore, N, Spetzler, RF. Safety and accuracy of bedside external ventricular drain placement. Neurosurgery. 2008;63(1 suppl_1):ONS162–ONS167.Google ScholarPubMed
Saladino, A, White, JB, Wijdicks, EF, Lanzino, G. Malplacement of ventricular catheters by neurosurgeons: a single institution experience. Neurocrit Care. 2009;10(2):248–52.CrossRefGoogle ScholarPubMed
Woernle, CM, Burkhardt, JK, Bellut, D, Krayenbuehl, N, Bertalanffy, H. Do iatrogenic factors bias the placement of external ventricular catheters? – a single institute experience and review of the literature. Neurol Med Chir (Tokyo). 2011;51(3):180–6.CrossRefGoogle ScholarPubMed
Patil, V, Lacson, R, Vosburgh, KG, et al. Factors associated with external ventricular drain placement accuracy: data from an electronic health record repository. Acta Neurochir (Wien). 2013;155(9):1773–9.CrossRefGoogle ScholarPubMed
AlAzri, A, Mok, K, Chankowsky, J, Mullah, M, Marcoux, J. Placement accuracy of external ventricular drain when comparing freehand insertion to neuronavigation guidance in severe traumatic brain injury. Acta Neurochir (Wien). 2017;159(8):13991411.CrossRefGoogle ScholarPubMed
Ellens, NR, Fischer, DL, Meldau, JE, Schroeder, BA, Patra, SE. external ventricular drain placement accuracy and safety when done by midlevel practitioners. Neurosurgery. 2019;84(1):235–41.CrossRefGoogle ScholarPubMed
Ghajar, JB. A guide for ventricular catheter placement. Technical note. J Neurosurg. 1985;63(6):985–6.CrossRefGoogle ScholarPubMed
Mahan, M, Spetzler, RF, Nakaji, P. Electromagnetic stereotactic navigation for external ventricular drain placement in the intensive care unit. J Clin Neurosci. 2013;20(12):1718–22.CrossRefGoogle ScholarPubMed
O’Leary, ST, Kole, MK, Hoover, DA, et al. Efficacy of the Ghajar Guide revisited: a prospective study. J Neurosurg. 2000;92(5):801–3.Google ScholarPubMed
Gardner, PA, Engh, J, Atteberry, D, Moossy, JJ. Hemorrhage rates after external ventricular drain placement. J Neurosurg. 2009;110(5):1021–5.CrossRefGoogle ScholarPubMed
Binz, DD, Toussaint, LG 3rd, Friedman, JA. Hemorrhagic complications of ventriculostomy placement: a meta-analysis. Neurocrit Care. 2009;10(2):253–6.CrossRefGoogle ScholarPubMed
Bauer, DF, McGwin, G Jr, Melton, SM, George, RL, Markert, JM. The relationship between INR and development of hemorrhage with placement of ventriculostomy. J Trauma. 2011a;70(5):1112–17.Google ScholarPubMed
Ko, JK, Cha, SH, Choi, BK, et al. Hemorrhage rates associated with two methods of ventriculostomy: external ventricular drainage vs. ventriculoperitoneal shunt procedure. Neurol Med Chir (Tokyo). 2014;54(7):545–51.CrossRefGoogle ScholarPubMed
Miller, C, Tummala, RP. Risk factors for hemorrhage associated with external ventricular drain placement and removal. J Neurosurg. 2017;126(1):289–97.CrossRefGoogle ScholarPubMed
Muller, A, Mould, WA, Freeman, WD, et al. The incidence of catheter tract hemorrhage and catheter placement accuracy in the CLEAR III trial. Neurocrit Care. 2018;29(1):2332.CrossRefGoogle ScholarPubMed
Bauer, DF, Razdan, SN, Bartolucci, AA, Markert, JM. Meta-analysis of hemorrhagic complications from ventriculostomy placement by neurosurgeons. Neurosurgery. 2011c;69(2):255–60.CrossRefGoogle ScholarPubMed
Sussman, ES, Kellner, CP, Nelson, E, et al. Hemorrhagic complications of ventriculostomy: incidence and predictors in patients with intracerebral hemorrhage. J Neurosurg. 2014;120(4):931–6.CrossRefGoogle ScholarPubMed
Hoh, BL, Nogueira, RG, Ledezma, CJ, Pryor, JC, Ogilvy, CS. Safety of heparinization for cerebral aneurysm coiling soon after external ventriculostomy drain placement. Neurosurgery. 2005;57(5):845–9; discussion 845–9.CrossRefGoogle ScholarPubMed
Leschke, JM, Lozen, A, Kaushal, M, et al. Hemorrhagic complications associated with ventriculostomy in patients undergoing endovascular treatment for intracranial aneurysms: a single-center experience. Neurocrit Care. 2017;27(1):1116.CrossRefGoogle ScholarPubMed
Gard, AP, Sayles, BD, Robbins, JW, Thorell, WE, Surdell, DL. Hemorrhage rate after external ventricular drain placement in subarachnoid hemorrhage: time to heparin administration. Neurocrit Care. 2017;27(3):350–5.CrossRefGoogle ScholarPubMed
Kung, DK, Policeni, BA, Capuano, AW, et al. Risk of ventriculostomy-related hemorrhage in patients with acutely ruptured aneurysms treated using stent-assisted coiling. J Neurosurg. 2011;114(4):1021–7.CrossRefGoogle ScholarPubMed
Hudson, JS, Prout, BS, Nagahama, Y, et al. External ventricular drain and hemorrhage in aneurysmal subarachnoid hemorrhage patients on dual antiplatelet therapy: a retrospective cohort study. Neurosurgery. 2019;84(2):479–84.CrossRefGoogle ScholarPubMed
Tanweer, O, Boah, A, Huang, PP. Risks for hemorrhagic complications after placement of external ventricular drains with early chemical prophylaxis against venous thromboembolisms. J Neurosurg. 2013;119(5):1309–13.CrossRefGoogle ScholarPubMed
Lozier, AP, Sciacca, RR, Romagnoli, MF, Connolly, ES Jr. Ventriculostomy-related infections: a critical review of the literature. Neurosurgery. 2002;51(1):170–81.CrossRefGoogle ScholarPubMed
Gozal, YM, Farley, CW, Hanseman, DJ, et al. Ventriculostomy-associated infection: a new, standardized reporting definition and institutional experience. Neurocrit Care. 2014;21(1):147–51.CrossRefGoogle ScholarPubMed
Mayhall, CG, Archer, NH, Lamb, VA, et al. Ventriculostomy-related infections. A prospective epidemiologic study. N Engl J Med. 1984;310(9):553–9.Google ScholarPubMed
Rebuck, JA, Murry, KR, Rhoney, DH, Michael, DB, Coplin, WM. Infection related to intracranial pressure monitors in adults: analysis of risk factors and antibiotic prophylaxis. J Neurol Neurosurg Psychiatry. 2000;69(3):381–4.CrossRefGoogle ScholarPubMed
Lyke, KE, Obasanjo, OO, Williams, MA, et al. Ventriculitis complicating use of intraventricular catheters in adult neurosurgical patients. Clin Infect Dis. 2001;33(12):2028–33.CrossRefGoogle ScholarPubMed
Ramanan, M, Lipman, J, Shorr, A, Shankar, A. A meta-analysis of ventriculostomy-associated cerebrospinal fluid infections. BMC Infect Dis. 2015;15:3.CrossRefGoogle ScholarPubMed
Dimitriou, J, Levivier, M, Gugliotta, M. Comparison of complications in patients receiving different types of intracranial pressure monitoring: a retrospective study in a single center in Switzerland. World Neurosurg. 2016;89:641–6.CrossRefGoogle Scholar
Murthy, SB, Moradiya, Y, Shah, J, Hanley, DF, Ziai, WC. Incidence, predictors, and outcomes of ventriculostomy-associated infections in spontaneous intracerebral hemorrhage. Neurocrit Care. 2016;24(3):389–96.CrossRefGoogle ScholarPubMed
Poblete, R, Zheng, L, Raghavan, R, et al. Trends in ventriculostomy-associated infections and mortality in aneurysmal subarachnoid hemorrhage: data from the nationwide inpatient sample. World Neurosurg. 2017;99:599604.CrossRefGoogle ScholarPubMed
Bari, ME, Haider, G, Malik, K, et al. Outcomes of post-neurosurgical ventriculostomy-associated infections. Surg Neurol Int. 2017;8:124.Google ScholarPubMed
Jamjoom, AAB, Joannides, AJ, Poon, MT, et al. Prospective, multicentre study of external ventricular drainage-related infections in the UK and Ireland. J Neurol Neurosurg Psychiatry. 2018;89(2):120–6.CrossRefGoogle ScholarPubMed
Kohli, G, Singh, R, Herschman, Y, Mammis, A. Infection incidence associated with external ventriculostomy placement: a comparison of outcomes in the emergency department, intensive care unit, and operating room. World Neurosurg. 2018;110:e135e140.CrossRefGoogle ScholarPubMed
Sam, JE, Lim, CL, Sharda, P, Wahab, NA. The organisms and factors affecting outcomes of external ventricular drainage catheter-related ventriculitis: a penang experience. Asian J Neurosurg. 2018;13(2):250–7.Google ScholarPubMed
Hoffman, H, Jalal, MS, Chin, LS. The incidence of meningitis in patients with traumatic brain injury undergoing external ventricular drain placement: a nationwide inpatient sample analysis. Neurocrit Care. 2019;30(3):666–74.CrossRefGoogle ScholarPubMed
Roach, J, Gaastra, B, Bulters, D, Shtaya, A. Safety, accuracy, and cost effectiveness of bedside bolt external ventricular drains (EVDs) in comparison with tunneled EVDs inserted in theaters. World Neurosurg. 2019;125:e473e478.CrossRefGoogle ScholarPubMed
Chi, H, Chang, KY, Chang, HC, Chiu, NC, Huang, FY. Infections associated with indwelling ventriculostomy catheters in a teaching hospital. Int J Infect Dis. 2010;14(3):e216–19.CrossRefGoogle ScholarPubMed
Sorinola, A, Buki, A, Sandor, J, Czeiter, E. Risk factors of external ventricular drain infection: proposing a model for future studies. Front Neurol. 2019;10:226.CrossRefGoogle Scholar
Habib, OB, Srihawan, C, Salazar, L, Hasbun, R. Prognostic impact of health care-associated meningitis in adults with intracranial hemorrhage. World Neurosurg. 2017;107:772–7.CrossRefGoogle ScholarPubMed
Srihawan, C, Castelblanco, RL, Salazar, L, et al. Clinical characteristics and predictors of adverse outcome in adult and pediatric patients with healthcare-associated ventriculitis and meningitis. Open Forum Infect Dis. 2016;3(2):ofw077.CrossRefGoogle ScholarPubMed
Keong, NC, Bulters, DO, Richards, HK, et al. The SILVER (Silver Impregnated Line Versus EVD Randomized trial): a double-blind, prospective, randomized, controlled trial of an intervention to reduce the rate of external ventricular drain infection. Neurosurgery. 2012;71(2):394403.CrossRefGoogle Scholar
Wong, GK, Poon, WS, Wai, S, et al. Failure of regular external ventricular drain exchange to reduce cerebrospinal fluid infection: result of a randomised controlled trial. J Neurol Neurosurg Psychiatry. 2002;73(6):759–61.CrossRefGoogle ScholarPubMed
May, AK, Fleming, SB, Carpenter, RO, et al. Influence of broad-spectrum antibiotic prophylaxis on intracranial pressure monitor infections and subsequent infectious complications in head-injured patients. Surg Infect (Larchmt). 2006;7(5):409–17.CrossRefGoogle ScholarPubMed
Sonabend, AM, Korenfeld, Y, Crisman, C, et al. Prevention of ventriculostomy-related infections with prophylactic antibiotics and antibiotic-coated external ventricular drains: a systematic review. Neurosurgery. 2011;68(4):9961005.CrossRefGoogle ScholarPubMed
Atkinson, RA, Fikrey, L, Vail, A, Patel, HC. Silver-impregnated external-ventricular-drain-related cerebrospinal fluid infections: a meta-analysis. J Hosp Infect. 2016;92(3):263–72.CrossRefGoogle ScholarPubMed
Konstantelias, AA, Vardakas, KZ, Polyzos, KA, Tansarli, GS, Falagas, ME. Antimicrobial-impregnated and -coated shunt catheters for prevention of infections in patients with hydrocephalus: a systematic review and meta-analysis. J Neurosurg. 2015;122(5):10961112.CrossRefGoogle ScholarPubMed
Root, BK, Barrena, BG, Mackenzie, TA, Bauer, DF. Antibiotic impregnated external ventricular drains: meta and cost analysis. World Neurosurg. 2016;86:306–15.CrossRefGoogle ScholarPubMed
Edwards, NC, Engelhart, L, Casamento, EM, McGirt, MJ. Cost-consequence analysis of antibiotic-impregnated shunts and external ventricular drains in hydrocephalus. J Neurosurg. 2015;122(1):139–47.CrossRefGoogle ScholarPubMed
Aten, Q, Killeffer, J, Seaver, C, Reier, L. Causes, complications, and costs associated with external ventricular drainage catheter obstruction. World Neurosurg. 2020;134:501–6.CrossRefGoogle ScholarPubMed
Gilard, V, Djoubairou, BO, Lepetit, A, et al. Small versus large catheters for ventriculostomy in the management of intraventricular hemorrhage. World Neurosurg. 2017;97:117–22.CrossRefGoogle ScholarPubMed
Rosenbaum, BP, Vadera, S, Kelly, ML, Kshettry, VR, Weil, RJ. Ventriculostomy: frequency, length of stay and in-hospital mortality in the United States of America, 1988–2010. J Clin Neurosci. 2014;21(4):623–32.CrossRefGoogle ScholarPubMed
Jensen, TS, Carlsen, JG, Sorensen, JC, Poulsen, FR. Fewer complications with bolt-connected than tunneled external ventricular drainage. Acta Neurochir (Wien). 2016;158(8):1491–4.CrossRefGoogle ScholarPubMed
Klopfenstein, JD, Kim, LJ, Feiz-Erfan, I, et al. Comparison of rapid and gradual weaning from external ventricular drainage in patients with aneurysmal subarachnoid hemorrhage: a prospective randomized trial. J Neurosurg. 2004;100(2):225–9.CrossRefGoogle ScholarPubMed
Jabbarli, R, Pierscianek, D, R RO, et al. Gradual external ventricular drainage weaning reduces the risk of shunt dependency after aneurysmal subarachnoid hemorrhage: a pooled analysis. Oper Neurosurg (Hagerstown). 2018;15(5):498504.CrossRefGoogle ScholarPubMed
Bauer, DF, McGwin, G, Jr, Melton, SM, George, RL, Markert, JM. Risk factors for conversion to permanent ventricular shunt in patients receiving therapeutic ventriculostomy for traumatic brain injury. Neurosurgery. 2011b;68(1):85–8.CrossRefGoogle ScholarPubMed
Zacharia, BE, Vaughan, KA, Hickman, ZL, et al. Predictors of long-term shunt-dependent hydrocephalus in patients with intracerebral hemorrhage requiring emergency cerebrospinal fluid diversion. Neurosurg Focus. 2012;32(4):E5.CrossRefGoogle ScholarPubMed
Peters, SR, Tirschwell, D. Timing of permanent ventricular shunt placement following external ventricular drain placement in primary intracerebral hemorrhage. J Stroke Cerebrovasc Dis. 2017;26(10):2120–7.CrossRefGoogle ScholarPubMed
Chung, DY, Leslie-Mazwi, TM, Patel, AB, Rordorf, GA. Management of external ventricular drains after subarachnoid hemorrhage: a multi-institutional survey. Neurocrit Care. 2017;26(3):356–61.CrossRefGoogle ScholarPubMed
Chalil, A, Staudt, MD, Lownie, SP. Iatrogenic pseudoaneurysms associated with cerebrospinal fluid diversion procedures. Surg Neurol Int. 2019;10:31.Google ScholarPubMed
Schuette, AJ, Blackburn, SL, Barrow, DL, Cawley, CM. Pial arteriovenous fistula resulting from ventriculostomy. World Neurosurg. 2012;77(5–6):785.e1–2.CrossRefGoogle ScholarPubMed
Kosty, J, Pukenas, B, Smith, M, et al. Iatrogenic vascular complications associated with external ventricular drain placement: a report of 8 cases and review of the literature. Neurosurgery. 2013;72(2 Suppl Operative):ons20813; discussion ons213.Google ScholarPubMed
Raygor, KP, Mooney, MA, Snyder, LA, et al. Pseudoaneurysm of distal anterior cerebral artery branch following external ventricular drain placement. Oper Neurosurg (Hagerstown). 2016;12(1):7782.CrossRefGoogle ScholarPubMed
Le, H, Munshi, I, Macdonald, RL, Wollmann, R, Frank, J. Traumatic aneurysm resulting from insertion of an intracranial pressure monitor. Case illustration.J Neurosurg. 2001;95(4):720.CrossRefGoogle ScholarPubMed
Shah, KJ, Jones, AM, Arnold, PM, Ebersole, K. Intracranial pseudoaneurysm after intracranial pressure monitor placement. BMJ Case Rep. 2014;2014:bcr2014011410.CrossRefGoogle ScholarPubMed
Pan, J, Barros, G, Greil, ME, et al. pseudoaneurysm of the superficial temporal artery after intracranial pressure monitoring device placement: case report of a rare complication. Oper Neurosurg (Hagerstown). 2020;19(3):288–91.Google ScholarPubMed
Kawsar, KA, Inam, MB, Watts, C. Diabetes insipidus-an extremely rare complication from replacement of an external ventricular drain. Acta Neurochir (Wien). 2019;161(7):1377–80.CrossRefGoogle ScholarPubMed
Stuart, RM, Schmidt, M, Kurtz, P, et al. Intracranial multimodal monitoring for acute brain injury: a single institution review of current practices. Neurocrit Care. 2010;12(2):188–98.CrossRefGoogle ScholarPubMed
Foreman, B, Ngwenya, LB, Stoddard, E, et al. Safety and reliability of bedside, single burr hole technique for intracranial multimodality monitoring in severe traumatic brain injury. Neurocrit Care. 2018;29(3):469–80.CrossRefGoogle ScholarPubMed
Koskinen, LO, Grayson, D, Olivecrona, M. The complications and the position of the Codman MicroSensor ICP device: an analysis of 549 patients and 650 Sensors. Acta Neurochir (Wien). 2013;155(11):2141–8; discussion 2148.CrossRefGoogle ScholarPubMed
Martinez-Manas, RM, Santamarta, D, de Campos, JM, Ferrer, E. Camino intracranial pressure monitor: prospective study of accuracy and complications. J Neurol Neurosurg Psychiatry. 2000;69(1):82–6.CrossRefGoogle ScholarPubMed
Gelabert-Gonzalez, M, Ginesta-Galan, V, Sernamito-Garcia, R, et al. The Camino intracranial pressure device in clinical practice. Assessment in a 1000 cases. Acta Neurochir (Wien). 2006;148(4):435–41.CrossRefGoogle Scholar
Dengler, BA, Mendez-Gomez, P, Chavez, A, et al. Safety of chemical DVT prophylaxis in severe traumatic brain injury with invasive monitoring devices. Neurocrit Care. 2016;25(2):215–23.CrossRefGoogle ScholarPubMed
Okonkwo, DO, Shutter, LA, Moore, C, et al. Brain oxygen optimization in severe traumatic brain injury Phase-II: a phase II randomized trial. Crit Care Med. 2017;45(11):1907–14.CrossRefGoogle ScholarPubMed
Karvellas, CJ, Fix, OK, Battenhouse, H, et al. Outcomes and complications of intracranial pressure monitoring in acute liver failure: a retrospective cohort study. Crit Care Med. 2014;42(5):1157–67.CrossRefGoogle ScholarPubMed
Bailey, RL, Quattrone, F, Curtin, C, et al. The safety of multimodality monitoring using a triple-lumen bolt in severe acute brain injury. World Neurosurg. 2019;130:e62e67.CrossRefGoogle ScholarPubMed
Davis, JW, Davis, IC, Bennink, LD, et al. Placement of intracranial pressure monitors: are “normal” coagulation parameters necessary? J Trauma. 2004;57(6):1173–7.Google ScholarPubMed
Stoikes, NF, Magnotti, LJ, Hodges, TM, et al. Impact of intracranial pressure monitor prophylaxis on central nervous system infections and bacterial multi-drug resistance. Surg Infect (Larchmt). 2008;9(5):503–8.CrossRefGoogle ScholarPubMed
Kaups, KL, Parks, SN, Morris, CL. Intracranial pressure monitor placement by midlevel practitioners. J Trauma. 1998;45(5):884–6.CrossRefGoogle ScholarPubMed
Coplin, WM, O’Keefe, GE, Grady, MS, et al. Thrombotic, infectious, and procedural complications of the jugular bulb catheter in the intensive care unit. Neurosurgery. 1997;41(1):101–7; discussion 107–9.CrossRefGoogle ScholarPubMed
Goetting, MG, Preston, G. Jugular bulb catheterization: experience with 123 patients. Crit Care Med. 1990;18(11):1220–3.CrossRefGoogle ScholarPubMed
Goetting, MG, Preston, G. Jugular bulb catheterization does not increase intracranial pressure. Intensive Care Med. 1991;17(4):195–8.CrossRefGoogle Scholar
Ducruet, AF, Grobelny, BT, Zacharia, BE, et al. The surgical management of chronic subdural hematoma. Neurosurg Rev. 2012;35(2):155–69; discussion 169.CrossRefGoogle ScholarPubMed
Sucu, HK, Gokmen, M, Ergin, A, Bezircioglu, H, Gokmen, A. Is there a way to avoid surgical complications of twist drill craniostomy for evacuation of a chronic subdural hematoma? Acta Neurochir (Wien). 2007;149(6):597–9.CrossRefGoogle Scholar
Singh, SK, Sinha, M, Singh, VK, et al. A randomized study of twist drill versus burr hole craniostomy for treatment of chronic subdural hematoma in 100 patients. Indian J Neurotrauma. 2011;8(2):83–8.CrossRefGoogle Scholar
Kamenova, M, Wanderer, S, Lipps, P, et al. When the drain hits the brain. World Neurosurg. 2020;138:e426e436.CrossRefGoogle ScholarPubMed
Horn, EM, Feiz-Erfan, I, Bristol, RE, Spetzler, RF, Harrington, TR. Bedside twist drill craniostomy for chronic subdural hematoma: a comparative study. Surg Neurol. 2006;65(2):150–3; discussion 153–4.CrossRefGoogle ScholarPubMed
Gokmen, M, Sucu, HK, Ergin, A, Gokmen, A, Bezircio Lu, H. Randomized comparative study of burr-hole craniostomy versus twist drill craniostomy; surgical management of unilateral hemispheric chronic subdural hematomas. Zentralbl Neurochir. 2008;69(3):129–33.CrossRefGoogle ScholarPubMed
Flint, AC, Chan, SL, Rao, VA, et al. Treatment of chronic subdural hematomas with subdural evacuating port system placement in the intensive care unit: evolution of practice and comparison with bur hole evacuation in the operating room. J Neurosurg. 2017;127(6):1443–8.CrossRefGoogle ScholarPubMed
Hoffman, H, Ziechmann, R, Beutler, T, Verhave, B, Chin, LS. First-line management of chronic subdural hematoma with the subdural evacuating port system: Institutional experience and predictors of outcomes. J Clin Neurosci. 2018;50:221–5.CrossRefGoogle ScholarPubMed
Jablawi, F, Kweider, H, Nikoubashman, O, Clusmann, H, Schubert, GA. Twist drill procedure for chronic subdural hematoma evacuation: an analysis of predictors for treatment success. World Neurosurg. 2017;100:480–6.CrossRefGoogle ScholarPubMed
Ortiz, M, Belton, P, Burton, M, Litofsky, NS. Subdural drain versus subdural evacuating port system for the treatment of nonacute subdural hematomas: a single-center retrospective cohort study. World Neurosurg. 2020;139:e355e362.CrossRefGoogle ScholarPubMed
Governale, LS, Fein, N, Logsdon, J, Black, PM. Techniques and complications of external lumbar drainage for normal pressure hydrocephalus. Neurosurgery. 2008;63(4 Suppl 2):379–84; discussion 384.Google ScholarPubMed
Acikbas, SC, Akyuz, M, Kazan, S, Tuncer, R. Complications of closed continuous lumbar drainage of cerebrospinal fluid. Acta Neurochir (Wien). 2002;144(5):475–80.Google ScholarPubMed
Roland, PS, Marple, BF, Meyerhoff, WL, Mickey, B. Complications of lumbar spinal fluid drainage. Otolaryngol Head Neck Surg. 1992;107(4):564–9.CrossRefGoogle ScholarPubMed
Greenberg, BM, Williams, MA. Infectious complications of temporary spinal catheter insertion for diagnosis of adult hydrocephalus and idiopathic intracranial hypertension. Neurosurgery. 2008;62(2):431–5; discussion 435–6.CrossRefGoogle ScholarPubMed
Dardik, A, Perler, BA, Roseborough, GS, Williams, GM. Subdural hematoma after thoracoabdominal aortic aneurysm repair: an underreported complication of spinal fluid drainage? J Vasc Surg. 2002;36(1):4750.CrossRefGoogle ScholarPubMed
Miglis, MG, Levine, DN. Intracranial venous thrombosis after placement of a lumbar drain. Neurocrit Care. 2010;12(1):83–7.CrossRefGoogle ScholarPubMed
Cain, RB, Patel, NP, Hoxworth, JM, Lal, D. Abducens palsy after lumbar drain placement: a rare complication in endoscopic skull base surgery. Laryngoscope. 2013;123(11):2633–8.CrossRefGoogle ScholarPubMed
Basurto Ona, X, Osorio, D, Bonfill Cosp, X. Drug therapy for treating post-dural puncture headache. Cochrane Database Syst Rev. 2015;7:CD007887.Google Scholar
Arevalo-Rodriguez, I, Ciapponi, A, Roque i Figuls, M, Munoz, L, Bonfill Cosp, X. Posture and fluids for preventing post-dural puncture headache. Cochrane Database Syst Rev. 2016;3:CD009199.Google ScholarPubMed
Arevalo-Rodriguez, I, Munoz, L, Godoy-Casasbuenas, N, et al. Needle gauge and tip designs for preventing post-dural puncture headache (PDPH). Cochrane Database Syst Rev. 2017;4:CD010807.Google ScholarPubMed
Nath, S, Koziarz, A, Badhiwala, JH, et al. Atraumatic versus conventional lumbar puncture needles: a systematic review and meta-analysis. Lancet. 2018;391(10126):11971204.CrossRefGoogle Scholar
Estcourt, LJ, Desborough, MJ, Doree, C, Hopewell, S, Stanworth, SJ. Plasma transfusions prior to lumbar punctures and epidural catheters for people with abnormal coagulation. Cochrane Database Syst Rev. 2017;9:CD012497.CrossRefGoogle ScholarPubMed
Estcourt, LJ, Malouf, R, Hopewell, S, Doree, C, Van Veen, J. Use of platelet transfusions prior to lumbar punctures or epidural anaesthesia for the prevention of complications in people with thrombocytopenia. Cochrane Database Syst Rev. 2018;4:CD011980.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×