Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-22T14:32:13.749Z Has data issue: false hasContentIssue false

Chapter 7 - Prognostication in Cardiac Arrest

from Part I - Disease-Specific Prognostication

Published online by Cambridge University Press:  14 November 2024

David M. Greer
Affiliation:
Boston University School of Medicine and Boston Medical Center
Neha S. Dangayach
Affiliation:
Icahn School of Medicine at Mount Sinai and Mount Sinai Health System
Get access

Summary

The global incidence of cardiac arrest (CA) outside of the hospital setting is roughly 100/100,000 person/years, but there is substantial variation between countries and continents.[1] A coronary artery occlusion is the most common cause, but CA may also be caused by a primary arrhythmia, other cardiac diseases, or be secondary to a noncardiac cause such as hypoxia or asphyxia;[2] opiate drug overdose may account for several cases, especially in the United States. Survival rates have increased during the last few decades, and approximate 10% in Europe [3] and the United States.[4] A cardiac arrest leads to an immediate interruption of perfusion of all body organs including the brain (no flow). Bystander cardiopulmonary resuscitation (CPR) will partly restore circulation (low flow), and rapid institution of bystander CPR is the most important modifiable factor for survival.[5] During the period of “no” and “low” flow until the restoration of spontaneous circulation (ROSC), the brain and all other organs are exposed to global ischemia.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berdowski, J., Berg, R. A., Tijssen, J. G., Koster, R. W.. Global incidences of out-of-hospital cardiac arrest and survival rates: systematic review of 67 prospective studies. Resuscitation. 2010;81(11):1479–87.CrossRefGoogle ScholarPubMed
Myat, A., Song, K. J., Rea, T.. Out-of-hospital cardiac arrest: current concepts. Lancet. 2018;391(10124):970–9.CrossRefGoogle ScholarPubMed
Grasner, J. T., Lefering, R., Koster, W., et al. EuReCa ONE Collaborators. EuReCa ONE – 27 Nations, ONE Europe, ONE Registry: a prospective one month analysis of out-of-hospital cardiac arrest outcomes in 27 countries in Europe. Resuscitation. 2016;105:188–95.Google ScholarPubMed
Benjamin, E. J., Blaha, M. J., Chiuve, S. E., et al. American Heart Association Statistics and S. Stroke Statistics. Heart Disease and Stroke Statistics-2017 Update: a report from the American Heart Association. Circulation. 2017;135(10):e146e603.CrossRefGoogle ScholarPubMed
Sasson, C., Rogers, M. A., Dahl, J., Kellermann, A. L.. Predictors of survival from out-of-hospital cardiac arrest: a systematic review and meta-analysis. Circ Cardiovasc Qual Outcomes. 2010;3(1):6381.CrossRefGoogle ScholarPubMed
Berg, K. M., Grossestreuer, A. V., Uber, A., Patel, P. V., Donnino, M. W.. Intubation is not a marker for coma after in-hospital cardiac arrest: A retrospective study. Resuscitation. 2017;119:1820.CrossRefGoogle Scholar
Sanganalmath, S. K., Gopal, P., Parker, J. R., et al. Global cerebral ischemia due to circulatory arrest: insights into cellular pathophysiology and diagnostic modalities. Mol Cell Biochem. 2017;426(1–2):111–27.CrossRefGoogle ScholarPubMed
Bjorklund, E., Lindberg, E., Rundgren, M., et al. Ischaemic brain damage after cardiac arrest and induced hypothermia – a systematic description of selective eosinophilic neuronal death. A neuropathologic study of 23 patients. Resuscitation. 2014;85(4):527–32.CrossRefGoogle Scholar
Sandroni, C., D’Arrigo, S., Callaway, C. W., et al. The rate of brain death and organ donation in patients resuscitated from cardiac arrest: a systematic review and meta-analysis. Intensive Care Med. 2016;42(11):1661–71.CrossRefGoogle ScholarPubMed
Ormseth, C. H., Maciel, C. B., Zhou, S. E., et al. Differential outcomes following successful resuscitation in cardiac arrest due to drug overdose. Resuscitation. 2019;139:916.CrossRefGoogle ScholarPubMed
Nolan, J. P., Sandroni, C., Bottiger, B. W., et al. European Resuscitation Council and European Society of Intensive Care Medicine guidelines 2021: post-resuscitation care. Intensive Care Med. 2021;47(4):369421.CrossRefGoogle ScholarPubMed
Dragancea, I., Rundgren, M., Englund, E., Friberg, H., Cronberg, T.. The influence of induced hypothermia and delayed prognostication on the mode of death after cardiac arrest. Resuscitation. 2013;84(3):337342.CrossRefGoogle ScholarPubMed
Dragancea, I., Wise, M. P., Al-Subaie, N., et al., T. T. M. t. Investigators. Protocol-driven neurological prognostication and withdrawal of life-sustaining therapy after cardiac arrest and targeted temperature management. Resuscitation. 2017;117:50–7.CrossRefGoogle ScholarPubMed
Pachys, G., Kaufman, N., Bdolah-Abram, T., Kark., J. D. Einav, S.. Predictors of long-term survival after out-of-hospital cardiac arrest: the impact of Activities of Daily Living and Cerebral Performance Category scores. Resuscitation. 2014;85(8):1052–8.CrossRefGoogle ScholarPubMed
Kim, Y. J., Ahn, S., Sohn, C. H., et al. Long-term neurological outcomes in patients after out-of-hospital cardiac arrest. Resuscitation. 2016;101:15.CrossRefGoogle ScholarPubMed
Steinberg, A., Callaway, C. W., Arnold, R. M., et al. Prognostication after cardiac arrest: Results of an international, multi-professional survey. Resuscitation. 2019;138:190–7.CrossRefGoogle ScholarPubMed
Callaway, C. W., Donnino, M. W., Fink, E. L., et al. Part 8: Post-Cardiac Arrest Care: 2015 American Heart Association Guidelines Update for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 2015;132(18 Suppl 2):S465–82.CrossRefGoogle ScholarPubMed
Elmer, J., Torres, C., Aufderheide, T. P., et al., C. Resuscitation Outcomes Consortium. Association of early withdrawal of life-sustaining therapy for perceived neurological prognosis with mortality after cardiac arrest. Resuscitation. 2016;102:127–35.CrossRefGoogle ScholarPubMed
May, T. L., Ruthazer, R., Riker, R. R., et al. Early withdrawal of life support after resuscitation from cardiac arrest is common and may result in additional deaths. Resuscitation. 2019;139:308–13.CrossRefGoogle ScholarPubMed
Friberg, H., Cronberg, T., Dunser, M. W., et al. Survey on current practices for neurological prognostication after cardiac arrest. Resuscitation. 2015;90:158–62.CrossRefGoogle ScholarPubMed
Wijdicks, E. F., Bamlet, W. R., Maramattom, B. V., Manno, E. M., McClelland, R. L.. Validation of a new coma scale: the FOUR score. Ann Neurol. 2005;58(4):585–93.CrossRefGoogle ScholarPubMed
Wijdicks, E. F. Clinical scales for comatose patients: the Glasgow Coma Scale in historical context and the new FOUR Score. Rev Neurol Dis. 2006;3(3):109–17.Google Scholar
Sandroni, C., Cariou, A., Cavallaro, F., et al. Prognostication in comatose survivors of cardiac arrest: an advisory statement from the European Resuscitation Council and the European Society of Intensive Care Medicine. Intensive Care Med. 2014;40(12):1816–31.CrossRefGoogle ScholarPubMed
Rossetti, A. O., Rabinstein, A. A., Oddo, M.. Neurological prognostication of outcome in patients in coma after cardiac arrest. Lancet Neurol. 2016;15:597609.CrossRefGoogle ScholarPubMed
Fugate, J. E., Rabinstein, A. A., Claassen, D. O., White, R. D., Wijdicks, E. F.. The FOUR score predicts outcome in patients after cardiac arrest. Neurocrit Care. 2010;13(2):205–10.CrossRefGoogle ScholarPubMed
Weiss, N., Venot, M., Verdonk, F., et al. Daily FOUR score assessment provides accurate prognosis of long-term outcome in out-of-hospital cardiac arrest. Rev Neurol (Paris). 2015;171(5):437–44.CrossRefGoogle ScholarPubMed
Rittenberger, J. C., Tisherman, S. A., Holm, M. B., Guyette, F. X., Callaway, C. W.. An early, novel illness severity score to predict outcome after cardiac arrest. Resuscitation. 2011;82(11):13991404.CrossRefGoogle ScholarPubMed
Coppler, P. J., Elmer, J., Calderon, L., et al. Post Cardiac Arrest Service. Validation of the Pittsburgh Cardiac Arrest Category illness severity score. Resuscitation. 2015;89:8692.CrossRefGoogle ScholarPubMed
Fugate, J. E., Wijdicks, E. F., Mandrekar, J., et al. Predictors of neurologic outcome in hypothermia after cardiac arrest. Ann Neurol. 2010;68(6):907–14.CrossRefGoogle ScholarPubMed
Bouwes, A., Binnekade, J. M., Kuiper, M. A., et al. Prognosis of coma after therapeutic hypothermia: a prospective cohort study. Ann Neurol. 2012;71(2):206–12.CrossRefGoogle ScholarPubMed
Greer, D. M., Yang, J., Scripko, P. D., et al. Clinical examination for prognostication in comatose cardiac arrest patients. Resuscitation. 2013;84(11):1546–51.CrossRefGoogle ScholarPubMed
Golan, E., Barrett, K., Alali, A. S., et al. Predicting neurologic outcome after targeted temperature management for cardiac arrest: systematic review and meta-analysis. Crit Care Med. 2014;42(8):1919–30.CrossRefGoogle ScholarPubMed
Sandroni, C., Cariou, A., Cavallaro, F., et al. Prognostication in comatose survivors of cardiac arrest: an advisory statement from the European Resuscitation Council and the European Society of Intensive Care Medicine. Resuscitation. 2014;85(12):1779–89.CrossRefGoogle ScholarPubMed
Wijdicks, E. F., Hijdra, A., Young, G. B., Bassetti, C. L., Wiebe, S.. Practice parameter: prediction of outcome in comatose survivors after cardiopulmonary resuscitation (an evidence-based review):report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology. 2006;67(2):203–10.Google Scholar
Al Thenayan, E., Savard, M., Sharpe, M., Norton, L., Young, B.. Predictors of poor neurologic outcome after induced mild hypothermia following cardiac arrest. Neurology. 2008;71(19):1535–7.CrossRefGoogle ScholarPubMed
Rossetti, A. O., Oddo, M., Logroscino, G., Kaplan, P. W.. Prognostication after cardiac arrest and hypothermia: a prospective study. Ann Neurol. 2010;67(3):301–7.CrossRefGoogle ScholarPubMed
Samaniego, E. A., Mlynash, M., Caulfield, A. F., Eyngorn, I., Wijman, C. A.. Sedation confounds outcome prediction in cardiac arrest survivors treated with hypothermia. Neurocrit Care. 2011;15(1):113–19.CrossRefGoogle ScholarPubMed
Schefold, J. C., Storm, C., Kruger, A., Ploner, C. J., Hasper, D.. The Glasgow Coma Score is a predictor of good outcome in cardiac arrest patients treated with therapeutic hypothermia. Resuscitation. 2009;80(6):658–61.CrossRefGoogle ScholarPubMed
Wijdicks, E. F., Parisi, J. E., Sharbrough, F. W.. Prognostic value of myoclonus status in comatose survivors of cardiac arrest. Ann Neurol. 1994;35(2):239–43.CrossRefGoogle ScholarPubMed
Bisschops, L. L., van Alfen, N., Bons, S., van der Hoeven, J. G., Hoedemaekers, C. W.. Predictors of poor neurologic outcome in patients after cardiac arrest treated with hypothermia: a retrospective study. Resuscitation. 2011;82(6):696701.CrossRefGoogle ScholarPubMed
Bouwes, A., van Poppelen, D., Koelman, J. H., et al. Acute posthypoxic myoclonus after cardiopulmonary resuscitation. BMC Neurol. 2012;12:63.CrossRefGoogle ScholarPubMed
Lucas, J. M., Cocchi, M. N., Salciccioli, J., et al. Neurologic recovery after therapeutic hypothermia in patients with post-cardiac arrest myoclonus. Resuscitation. 2012;83(2):265–9.CrossRefGoogle ScholarPubMed
Seder, D. B., Sunde, K., Rubertsson, S., et al. Neurologic outcomes and postresuscitation care of patients with myoclonus following cardiac arrest. Crit Care Med. 2015;43(5):965–72.CrossRefGoogle ScholarPubMed
Lybeck, A., Friberg, H., Aneman, A., et al., T. T.-t. Investigators. Prognostic significance of clinical seizures after cardiac arrest and target temperature management. Resuscitation. 2017;114:146–51.CrossRefGoogle ScholarPubMed
Sandroni, C., Cavallaro, F., Callaway, C. W., et al. Predictors of poor neurological outcome in adult comatose survivors of cardiac arrest: a systematic review and meta-analysis. Part 2: patients treated with therapeutic hypothermia. Resuscitation. 2013;84(10):1324–38.Google ScholarPubMed
Dhakar, M. B., Sivaraju, A., Maciel, C. B., et al. Electro-clinical characteristics and prognostic significance of post anoxic myoclonus. Resuscitation. 2018;131:114–20.CrossRefGoogle ScholarPubMed
Hallett, M. Physiology of human posthypoxic myoclonus. Mov Disord. 2000;15 (Suppl 1):813.CrossRefGoogle ScholarPubMed
van Zijl, J. C., Beudel, M., Elting, J. J., et al. The inter-rater variability of clinical assessment in post-anoxic myoclonus. Tremor Other Hyperkinet Mov (N Y). 2017;7:470.CrossRefGoogle ScholarPubMed
van Zijl, J. C., Beudel, M., de Jong, B. M., et al. The interrelation between clinical presentation and neurophysiology of posthypoxic myoclonus. Ann Clin Transl Neurol. 2018;5(4):386–96.CrossRefGoogle ScholarPubMed
Elmer, J., Rittenberger, J. C., Faro, J., et al. S. Pittsburgh Post-Cardiac Arrest. Clinically distinct electroencephalographic phenotypes of early myoclonus after cardiac arrest. Ann Neurol. 2016;80(2):175–84.CrossRefGoogle ScholarPubMed
Aicua Rapun, I., Novy, J., Solari, D., Oddo, M., Rossetti, A. O.. Early Lance-Adams syndrome after cardiac arrest: prevalence, time to return to awareness, and outcome in a large cohort. Resuscitation. 2017;115:169–72.CrossRefGoogle ScholarPubMed
Synek, V. M. Value of a revised EEG coma scale for prognosis after cerebral anoxia and diffuse head injury. Clin Electroencephalogr. 1990;21(1):2530.CrossRefGoogle ScholarPubMed
Rossetti, A. O., Carrera, E., Oddo, M.. Early EEG correlates of neuronal injury after brain anoxia. Neurology. 2012;78(11):796802.CrossRefGoogle ScholarPubMed
Hirsch, L. J., Fong, M. W. K., Leitinger, M., et al. American Clinical Neurophysiology Society’s Standardized Critical Care EEG Terminology: 2021 version. J Clin Neurophysiol. 2021;38(1):129.CrossRefGoogle ScholarPubMed
Westhall, E., Rosen, I., Rossetti, A. O., et al. Interrater variability of EEG interpretation in comatose cardiac arrest patients. Clin Neurophysiol. 2015;126(12):2397–404.CrossRefGoogle ScholarPubMed
Stecker, M. M., Cheung, A. T., Pochettino, A., et al. Deep hypothermic circulatory arrest: I. effects of cooling on electroencephalogram and evoked potentials. Ann Thorac Surg. 2001;71(1):1421CrossRefGoogle ScholarPubMed
Ruijter, B. J., van Putten, M., van den Bergh, W. M., Tromp, S. C., Hofmeijer, J.. Propofol does not affect the reliability of early EEG for outcome prediction of comatose patients after cardiac arrest. Clin Neurophysiol. 2019;130(8):1263–70.CrossRefGoogle Scholar
Hofmeijer, J., Beernink, T. M., Bosch, F. H., et al. Early EEG contributes to multimodal outcome prediction of postanoxic coma. Neurology. 2015;85(2):137–43.CrossRefGoogle ScholarPubMed
Sivaraju, A., Gilmore, E. J., Wira, C. R., et al. Prognostication of post-cardiac arrest coma: early clinical and electroencephalographic predictors of outcome. Intensive Care Med. 2015;41(7):1264–72.CrossRefGoogle ScholarPubMed
Rossetti, A. O., Tovar Quiroga, D. F., Juan, E., et al. Electroencephalography predicts poor and good outcomes after cardiac arrest: a two-center study. Crit Care Med. 2017;45(7):e674e682.CrossRefGoogle ScholarPubMed
Ruijter, B. J., Tjepkema-Cloostermans, M. C., Tromp, S. C., et al. Early EEG for outcome prediction of postanoxic coma: a prospective cohort study. Ann Neurol. 2019;86(2):203–14.CrossRefGoogle ScholarPubMed
Hofmeijer, J., Tjepkema-Cloostermans, M. C., van Putten, M. J.. Burst-suppression with identical bursts: a distinct EEG pattern with poor outcome in postanoxic coma. Clin Neurophysiol. 2014;125(5):947–54.CrossRefGoogle ScholarPubMed
Barbella, G., Novy, J., Marques-Vidal, P., Oddo, M., Rossetti, A. O.. Prognostic role of EEG identical bursts in patients after cardiac arrest: multimodal correlation. Resuscitation. 2020;148 140–4.CrossRefGoogle ScholarPubMed
Westhall, E., Rossetti, A. O., van Rootselaar, A. F., et al., T. T.-t. investigators. Standardized EEG interpretation accurately predicts prognosis after cardiac arrest. Neurology. 2016;86(16):1482–90.CrossRefGoogle ScholarPubMed
Beuchat, I., Solari, D., Novy, J., Oddo, M., Rossetti, A. O.. Standardized EEG interpretation in patients after cardiac arrest: correlation with other prognostic predictors. Resuscitation. 2018;126:143–6.CrossRefGoogle ScholarPubMed
Berkhoff, M., Donati, F., Bassetti, C.. Postanoxic alpha (theta) coma: a reappraisal of its prognostic significance. Clin Neurophysiol. 2000;111(2):297304.CrossRefGoogle Scholar
Rossetti, A. O., Oddo, M., Liaudet, L., Kaplan, P. W.. Predictors of awakening from postanoxic status epilepticus after therapeutic hypothermia. Neurology. 2009;72(8):744–9.CrossRefGoogle ScholarPubMed
Legriel, S., Hilly-Ginoux, J., Resche-Rigon, M., et al. Prognostic value of electrographic postanoxic status epilepticus in comatose cardiac-arrest survivors in the therapeutic hypothermia era. Resuscitation. 2013;84(3):343–50.CrossRefGoogle ScholarPubMed
Backman, S., Westhall, E., Dragancea, I., et al. Electroencephalographic characteristics of status epilepticus after cardiac arrest. Clin Neurophysiol. 2017;128(4):681–8.CrossRefGoogle ScholarPubMed
Beretta, S., Coppo, A., Bianchi, E., et al. Neurologic outcome of postanoxic refractory status epilepticus after aggressive treatment. Neurology. 2018;91(23):e2153e2162.CrossRefGoogle ScholarPubMed
Trinka, E., Cock, H., Hesdorffer, D., et al. A definition and classification of status epilepticus – report of the ILAE Task Force on Classification of Status Epilepticus. Epilepsia. 2015;56(10):1515–23.CrossRefGoogle ScholarPubMed
Sadaka, F., Doerr, D., Hindia, J., Lee, K. P., Logan, W.. Continuous electroencephalogram in comatose postcardiac arrest syndrome patients treated with therapeutic hypothermia: outcome prediction study. J Intensive Care Med. 2015;30(5):292–6.CrossRefGoogle ScholarPubMed
Westhall, E., Rosen, I., Rundgren, M., et al. Time to epileptiform activity and EEG background recovery are independent predictors after cardiac arrest. Clin Neurophysiol. 2018;129(8):1660–8.CrossRefGoogle ScholarPubMed
Barbella, G., Lee, J. W., Alvarez, V., et al. Prediction of regaining consciousness despite an early epileptiform EEG after cardiac arrest. Neurology. 2020;94(16):e1675e1683.CrossRefGoogle ScholarPubMed
Beuchat, I., Sivaraju, A., Amorim, E., et al. MRI-EEG correlation for outcome prediction in postanoxic myoclonus: a multicenter study. Neurology. 2020;95(4):e335e341.CrossRefGoogle ScholarPubMed
Forgacs, P. B., Devinsky, O., Schiff, N. D.. Independent functional outcomes after prolonged coma following cardiac arrest: a mechanistic hypothesis. Ann Neurol. 2020;87(4):618–32.CrossRefGoogle ScholarPubMed
Admiraal, M. M., van Rootselaar, A. F., Horn, J.. International consensus on EEG reactivity testing after cardiac arrest: towards standardization. Resuscitation. 2018;131:3641.CrossRefGoogle ScholarPubMed
Al Thenayan, E., Savard, M., Sharpe, M. D., Norton, L., Young, B.. Electroencephalogram for prognosis after cardiac arrest. J Crit Care. 2010;25(2):300–4.CrossRefGoogle Scholar
Oddo, M. and Rossetti, A. O.. Early multimodal outcome prediction after cardiac arrest in patients treated with hypothermia. Crit Care Med. 2014;42(6):1340–7.CrossRefGoogle ScholarPubMed
Juan, E., Novy, J., Suys, T., Oddo, M., Rossetti, A. O.. clinical evolution after a non-reactive hypothermic EEG following cardiac arrest. Neurocrit Care. 2015;22:403–8.CrossRefGoogle ScholarPubMed
Rossetti, A. O., Urbano, L. A., Delodder, F., Kaplan, P. W., Oddo, M.. Prognostic value of continuous EEG monitoring during therapeutic hypothermia after cardiac arrest. Crit Care. 2010;14(5):R173.CrossRefGoogle ScholarPubMed
Tsetsou, S., Oddo, M., Rossetti, A. O.. Clinical outcome after a reactive hypothermic EEG following cardiac arrest. Neurocrit Care. 2013;19(3):283–6.CrossRefGoogle ScholarPubMed
Noirhomme, Q., Lehembre, R., Lugo Zdel, R., et al. Automated analysis of background EEG and reactivity during therapeutic hypothermia in comatose patients after cardiac arrest. Clin EEG Neurosci. 2014;45(1):613.CrossRefGoogle ScholarPubMed
Duez, C. H. V., Ebbesen, M. Q., Benedek, K., et al. Large inter-rater variability on EEG-reactivity is improved by a novel quantitative method. Clin Neurophysiol. 2018;129(4):724–30.CrossRefGoogle ScholarPubMed
Admiraal, M. M., van Rootselaar, A. F., Hofmeijer, J., et al. Electroencephalographic reactivity as predictor of neurological outcome in postanoxic coma: a multicenter prospective cohort study. Ann Neurol. 2019;86(1):1727.CrossRefGoogle Scholar
Lee, J. W. EEG reactivity in coma after cardiac arrest: is it enough to wake up the dead? Epilepsy Curr. 2019;19(6):369–71.CrossRefGoogle ScholarPubMed
Fantaneanu, T. A., Tolchin, B., Alvarez, V., et al. Effect of stimulus type and temperature on EEG reactivity in cardiac arrest. Clin Neurophysiol. 2016;127(11):3412–17.CrossRefGoogle ScholarPubMed
Caporro, M., Rossetti, A. O., Seiler, A., et al. Electromyographic reactivity measured with scalp-EEG contributes to prognostication after cardiac arrest. Resuscitation. 2019;138:146–52.CrossRefGoogle ScholarPubMed
Alvarez, V., Sierra-Marcos, A., Oddo., M. Rossetti, A. O.. Yield of intermittent versus continuous EEG in comatose survivors of cardiac arrest treated with hypothermia. Crit Care. 2013;17(5):R190.CrossRefGoogle ScholarPubMed
Crepeau, A. Z., Fugate, J. E., Mandrekar, J., et al. Value analysis of continuous EEG in patients during therapeutic hypothermia after cardiac arrest. Resuscitation. 2014;85(6):785–79.CrossRefGoogle ScholarPubMed
Rossetti, A. O., Schindler, K., Sutter, R., et al. Continuous vs routine electroencephalogram in critically ill adults with altered consciousness and no recent seizure: a multicenter randomized clinical trial. JAMA Neurol. 2020;77(10):1225–32.CrossRefGoogle ScholarPubMed
Rundgren, M., Westhall, E., Cronberg, T., Rosen, I., Friberg, H.. Continuous amplitude-integrated electroencephalogram predicts outcome in hypothermia-treated cardiac arrest patients. Crit Care Med. 2010;38(9):1838–44.CrossRefGoogle ScholarPubMed
Cloostermans, M. C., van Meulen, F. B., Eertman, C. J., Hom, H. W., van Putten, M. J.. Continuous electroencephalography monitoring for early prediction of neurological outcome in postanoxic patients after cardiac arrest: a prospective cohort study. Crit Care Med. 2012;40(10):2867–75.CrossRefGoogle ScholarPubMed
Oh, S. H., Park, K. N., Kim, Y. M., er al. The prognostic value of continuous amplitude-integrated electroencephalogram applied immediately after return of spontaneous circulation in therapeutic hypothermia-treated cardiac arrest patients. Resuscitation. 2013;84(2):200–5.CrossRefGoogle ScholarPubMed
Oh, S. H., Park, K. N., Shon, Y. M., et al. Continuous amplitude-integrated electroencephalographic monitoring is a useful prognostic tool for hypothermia-treated cardiac arrest patients. Circulation. 2015;132(12):10941103.CrossRefGoogle ScholarPubMed
Tjepkema-Cloostermans, M. C., Hofmeijer, J., Hom, H. W., Bosch, F. H., van Putten, M.. Predicting outcome in postanoxic coma: are ten EEG electrodes enough? J Clin Neurophysiol. 2017;34(3):207–12.CrossRefGoogle Scholar
Backman, S., Cronberg, T., Rosen, I., Westhall, E.. Reduced EEG montage has a high accuracy in the post cardiac arrest setting. Clin Neurophysiol. 2020;131(9):2216–23.CrossRefGoogle Scholar
Amorim, E., Ghassemi, M. M., Lee, J. W., et al. Estimating the false positive rate of absent somatosensory evoked potentials in cardiac arrest prognostication. Crit Care Med. 2018;46(12):e1213e1221.CrossRefGoogle ScholarPubMed
Rothstein, T. L. SSEP retains its value as predictor of poor outcome following cardiac arrest in the era of therapeutic hypothermia. Crit Care. 2019;23(1):327.CrossRefGoogle ScholarPubMed
Fredland, A., Backman, S., Westhall, E.. Stratifying comatose postanoxic patients for somatosensory evoked potentials using routine EEG. Resuscitation. 2019;143:1721.CrossRefGoogle ScholarPubMed
Beuchat, I., Novy, J., Barbella, G., Oddo, M., Rossetti, A. O.. EEG patterns associated with present cortical SSEP after cardiac arrest. Acta Neurol Scand. 2020;142(2):181–6.CrossRefGoogle ScholarPubMed
Endisch, C., Storm, C., Ploner, C. J., Leithner, C.. Amplitudes of SSEP and outcome in cardiac arrest survivors: a prospective cohort study. Neurology. 2015;85(20):1752–60.CrossRefGoogle ScholarPubMed
Carrai, R., Scarpino, M., Lolli, F., et al. Early-SEPs’ amplitude reduction is reliable for poor-outcome prediction after cardiac arrest? Acta Neurol Scand. 2019;139(2):158–65.CrossRefGoogle ScholarPubMed
Oh, S. H., Park, K. N., Choi, S. P., et al. Beyond dichotomy: patterns and amplitudes of SSEPs and neurological outcomes after cardiac arrest. Crit Care. 2019;23(1):224.CrossRefGoogle ScholarPubMed
Scarpino, M., Lolli, F., Lanzo, G., et al. SSEP amplitude accurately predicts both good and poor neurological outcome early after cardiac arrest; a post-hoc analysis of the ProNeCA multicentre study. Resuscitation. 2021;163:162–71.CrossRefGoogle ScholarPubMed
Barbella, G., Novy, J., Marques-Vidal, P., Oddo, M., Rossetti, A. O.. Added value of somato-sensory evoked potentials amplitude for prognostication after cardiac arrest. Resuscitation. 2020;149:1723.CrossRefGoogle ScholarPubMed
Hahn, D. K., Geocadin, R. G., Greer, D. M.. Quality of evidence in studies evaluating neuroimaging for neurologic prognostication in adult patients resuscitated from cardiac arrest. Resuscitation. 2014;85(2):165–72.CrossRefGoogle ScholarPubMed
Inamasu, J., Miyatake, S., Suzuki, M., et al. Early CT signs in out-of-hospital cardiac arrest survivors: temporal profile and prognostic significance. Resuscitation. 2010;81(5):534–8.CrossRefGoogle ScholarPubMed
Wu, O., Batista, L. M., Lima, F. O., et al. Predicting clinical outcome in comatose cardiac arrest patients using early noncontrast computed tomography. Stroke. 2011;42(4):985992.CrossRefGoogle ScholarPubMed
Greer, D. M., Wu, O.. Neuroimaging in cardiac arrest prognostication. Semin Neurol. 2017;37(1):6674.Google ScholarPubMed
Moseby-Knappe, M., Pellis, T., Dragancea, I., et al., T. T.-t. Investigators. Head computed tomography for prognostication of poor outcome in comatose patients after cardiac arrest and targeted temperature management. Resuscitation. 2017;119:8994.CrossRefGoogle ScholarPubMed
Metter, R. B., Rittenberger, J. C., Guyette, F. X., Callaway, C. W.. Association between a quantitative CT scan measure of brain edema and outcome after cardiac arrest. Resuscitation. 2011;82(9):1180–5.CrossRefGoogle ScholarPubMed
Gentsch, A., Storm, C., Leithner, C., et al. Outcome prediction in patients after cardiac arrest: a simplified method for determination of gray-white matter ratio in cranial computed tomography. Clin Neuroradiol. 2015;25(1):4954.CrossRefGoogle ScholarPubMed
Hanning, U., Sporns, P. B., Lebiedz, P., et al. Automated assessment of early hypoxic brain edema in non-enhanced CT predicts outcome in patients after cardiac arrest. Resuscitation. 2016;104:91–4.CrossRefGoogle ScholarPubMed
Keijzer, H. M., Hoedemaekers, C. W. E., Meijer, F. J. A., et al. Brain imaging in comatose survivors of cardiac arrest: pathophysiological correlates and prognostic properties. Resuscitation. 2018;133:124–36.CrossRefGoogle ScholarPubMed
Na, M. K., Kim, W., Lim, T. H., et al. Gray matter to white matter ratio for predicting neurological outcomes in patients treated with target temperature management after cardiac arrest: a systematic review and meta-analysis. Resuscitation. 2018;132:21–8CrossRefGoogle ScholarPubMed
Cronberg, T., Brizzi, M., Liedholm, L. J., et al. Neurological prognostication after cardiac arrest-Recommendations from the Swedish Resuscitation Council. Resuscitation. 2013;84(7):867–72.CrossRefGoogle ScholarPubMed
Greer, D., Scripko, P., J. Bartscher, , et al. Serial MRI changes in comatose cardiac arrest patients. Neurocrit Care. 2011;14(1):61–7.CrossRefGoogle ScholarPubMed
Velly, L., Perlbarg, V., Boulier, T., et al. Use of brain diffusion tensor imaging for the prediction of long-term neurological outcomes in patients after cardiac arrest: a multicentre, international, prospective, observational, cohort study. Lancet Neurol. 2018;17(4):317–26.CrossRefGoogle ScholarPubMed
Stammet, P. blood biomarkers of hypoxic-ischemic brain injury after cardiac arrest. Semin Neurol. 2017;37(1):7580.Google ScholarPubMed
Cronberg, T., Rundgren, M., Westhall, E., et al. Neuron-specific enolase correlates with other prognostic markers after cardiac arrest. Neurology. 2011;77(7):623–30.CrossRefGoogle ScholarPubMed
Sahai, S. K., Majic, T., Patel, J., et al. Neurological prognostication of cardiac arrest in an era of extracorporeal membrane oxygenation. Neurohospitalist. 2017;7(1):35–8.CrossRefGoogle Scholar
Zandbergen, E. G., Hijdra, A., Koelman, J. H., et al. Prediction of poor outcome within the first 3 days of postanoxic coma. Neurology. 2006;66(1):62–8.CrossRefGoogle ScholarPubMed
Stammet, P., Collignon, O., Hassager, C., et al.; T. T.-T. Investigators. Neuron-specific enolase as a predictor of death or poor neurological outcome after out-of-hospital cardiac arrest and targeted temperature management at 33 degrees C and 36 degrees C. J Am Coll Cardiol. 2015;65(19):2104–14.CrossRefGoogle ScholarPubMed
Streitberger, K. J., Leithner, C., Wattenberg, M., et al. Neuron-specific enolase predicts poor outcome after cardiac arrest and targeted temperature management: a multicenter study on 1,053 patients. Crit Care Med. 2017;45(7):1145–51.CrossRefGoogle ScholarPubMed
Stammet, P., Dankiewicz, J., Nielsen, N., et al. Target Temperature Management after Out-of-Hospital Cardiac Arrest Trial. Protein S100 as outcome predictor after out-of-hospital cardiac arrest and targeted temperature management at 33 degrees C and 36 degrees C. Crit Care. 2017;21(1):153.CrossRefGoogle Scholar
Mattsson, N., Zetterberg, H., Nielsen, N., et al. Serum tau and neurological outcome in cardiac arrest. Ann Neurol. 2017;82(5):665–75.CrossRefGoogle ScholarPubMed
Moseby-Knappe, M., Mattsson, N., Nielsen, N., et al. Serum neurofilament light chain for prognosis of outcome after cardiac arrest. JAMA Neurol. 2019;76(1):6471.CrossRefGoogle ScholarPubMed
Moseby-Knappe, M., Mattsson-Carlgren, N., Stammet, P., et al. Serum markers of brain injury can predict good neurological outcome after out-of-hospital cardiac arrest. Intensive Care Med. 2021;47(9):984–94.CrossRefGoogle ScholarPubMed
Solari, D., Rossetti, A. O., Carteron, L., et al. Early prediction of coma recovery after cardiac arrest with blinded pupillometry. Ann Neurol. 2017;81(6):804–10.CrossRefGoogle ScholarPubMed
Suys, T., Bouzat, P., Marques-Vidal, P., et al. Automated quantitative pupillometry for the prognostication of coma after cardiac arrest. Neurocrit Care. 2014;21(2):300–8.CrossRefGoogle ScholarPubMed
Heimburger, D., Durand, M., Gaide-Chevronnay, L., et al. Quantitative pupillometry and transcranial Doppler measurements in patients treated with hypothermia after cardiac arrest. Resuscitation. 2016;103:8893.CrossRefGoogle ScholarPubMed
Oddo, M., Sandroni, C., Citerio, G., et al. Quantitative versus standard pupillary light reflex for early prognostication in comatose cardiac arrest patients: an international prospective multicenter double-blinded study. Intensive Care Med. 2018;44(12):2102–11.CrossRefGoogle ScholarPubMed
Zhou, S. E., Maciel, C. B., Ormseth, C. H., et al. Distinct predictive values of current neuroprognostic guidelines in post-cardiac arrest patients. Resuscitation. 2019;139:343–50.CrossRefGoogle ScholarPubMed
Gold, B., Puertas, L., Davis, S. P., et al. Awakening after cardiac arrest and post resuscitation hypothermia: are we pulling the plug too early? Resuscitation. 2014;85(2):211–14.CrossRefGoogle ScholarPubMed
Lybeck, A., Cronberg, T., Aneman, A., et al. Time to awakening after cardiac arrest and the association with target temperature management. Resuscitation. 2018;126:166–71.CrossRefGoogle ScholarPubMed
Moseby-Knappe, M., Westhall, E., Backman, S., et al. Performance of a guideline-recommended algorithm for prognostication of poor neurological outcome after cardiac arrest. Intensive Care Med. 2020;46(10):1852–62.CrossRefGoogle ScholarPubMed
Peskine, A., Picq, C., Pradat-Diehl., P. Cerebral anoxia and disability. Brain Inj. 2004;18(12):1243–54.CrossRefGoogle ScholarPubMed
Moulaert, V. R., Verbunt, J. A., van Heugten, C. M., Wade., D. T. Cognitive impairments in survivors of out-of-hospital cardiac arrest: a systematic review. Resuscitation. 2009;80(3):297305.CrossRefGoogle ScholarPubMed
Lilja, G., Nielsen, N., Friberg, H., et al. Cognitive function in survivors of out-of-hospital cardiac arrest after target temperature management at 33 degrees C versus 36 degrees C. Circulation. 2015;131(15):1340–9.CrossRefGoogle Scholar
Juan, E., De Lucia, M., Beaud, V., et al. How do you feel? Subjective perception of recovery as a reliable surrogate of cognitive and functional outcome in cardiac arrest survivors. Crit Care Med. 2018;46(4):e286e293.CrossRefGoogle Scholar
Lilja, G., Nielsen, N., Bro-Jeppesen, J., et al. Return to work and participation in society after out-of-hospital cardiac arrest. Circ Cardiovasc Qual Outcomes. 2018;11(1):e003566.CrossRefGoogle ScholarPubMed
Dankiewicz, J., Cronberg, T., Lilja, G., et al., T. T. M. T. Investigators. Hypothermia versus normothermia after out-of-hospital cardiac arrest. N Engl J Med. 2021;384(24):2283–94.CrossRefGoogle ScholarPubMed
Riker, R. R., Stone, P. C. Jr, May, T., et al. Initial bispectral index may identify patients who will awaken during therapeutic hypothermia after cardiac arrest: a retrospective pilot study. Resuscitation. 2013;84(6):794–7.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×