Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-28T01:59:11.102Z Has data issue: false hasContentIssue false

Part V - Cases

Published online by Cambridge University Press:  08 September 2022

Cecil D. Hahn
Affiliation:
The Hospital for Sick Children, University of Toronto
Courtney J. Wusthoff
Affiliation:
Lucile Packard Children’s Hospital, Stanford University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Glass, HC, et al. Risk factors for EEG seizures in neonates treated with hypothermia: a multi-center cohort study. Neurology. 2014;82:16.CrossRefGoogle Scholar
Glass, HC, et al. Contemporary profile of seizures in neonates: a prospective cohort study. J Pediatr. 2016;174:98103.CrossRefGoogle ScholarPubMed
Shellhaas, RA, et al. The American Clinical Neurophysiology Society’s Guideline on continuous electroencephalography monitoring in neonates. J Clin Neurophysiol. 2011;28:611–17.CrossRefGoogle ScholarPubMed

References

Chabrier, S, Husson, B, Dinomais, M, Landrieu, P, Nguyen TheTich, S. New insights (and new interrogations) in perinatal arterial ischemic stroke. Thromb Res. 2011;127(1):1322.CrossRefGoogle ScholarPubMed
Lee, J, Croen, LA, Lindan, C, et al. Predictors of outcome in perinatal arterial stroke: a population-based study. Ann Neurol. 2005 Aug;58(2):303–8.CrossRefGoogle ScholarPubMed
Walsh, BH, Low, E, Bogue, CO, Murray, DM, Boylan, GB. Early continuous video electroencephalography in neonatal stroke. Dev Med Child Neurol. 2011 Jan;53(1):8992.CrossRefGoogle ScholarPubMed
Low, E, Mathieson, SR, Stevenson, NJ, et al. Early postnatal EEG features of perinatal arterial ischaemic stroke with seizures. PLoS ONE. 2014 Jul 22;9(7):e100973.CrossRefGoogle ScholarPubMed

References

Shellhaas, RA, Chang, T, Tsuchida, T, et al. The American Clinical Neurophysiology Society’s Guideline on Continuous Electroencephalography Monitoring in Neonates. J Clin Neurophysiol. 2011;28:611–17.CrossRefGoogle ScholarPubMed
Glass, HC, Shellhaas, RA, Wusthoff, CJ, et al. Contemporary profile of seizures in neonates: a prospective cohort study. J Pediatr. 2016;174:98103.Google Scholar

References

Tsuchida, TN, Wusthoff, CJ, Shellhaas, RA, et al. American Clinical Neurophysiology Society standardized EEG terminology and categorization for the description of continuous EEG monitoring in neonates: report of the American Clinical Neurophysiology Society critical care monitoring committee. J Clin Neurophysiol. 2013;30(2):161–73.Google Scholar
Scheibl, A, Calderon, EM, Borau, MJ, et al. Epidural hematoma. J Pediatr Surg. 2012;47(2):e1921.Google Scholar
Hong, HS, Lee, JY. Intracranial hemorrhage in term neonates. Childs Nerv Sys. 2018;34(6):1135–43.CrossRefGoogle ScholarPubMed
Heyman, R, Heckly, A, Magagi, J, Pladys, P, Hamlat, A. Intracranial epidural hematoma in newborn infants: clinical study of 15 cases. Neurosurgery. 2005;57(5):924–9; discussion 9.CrossRefGoogle ScholarPubMed

References

Lloyd, RO, O’Toole, JM, Pavlidis, E, Filan, PM, Boylan, GB. Electrographic seizures during the early postnatal period in preterm infants. J Pediatr. 2017 Aug;187:1825.e2. PMID: 28366355.CrossRefGoogle ScholarPubMed
Scher, MS, Aso, K, Beggarly, ME, et al. Electrographic seizures in preterm and full-term neonates: clinical correlates, associated brain lesions, and risk for neurologic sequelae. Pediatrics. 1993 Jan;91(1):128–34. PMID: 8416475.Google Scholar
Weeke, LC, van Ooijen, IM, Groenendaal, F, et al. Rhythmic EEG patterns in extremely preterm infants: classification and association with brain injury and outcome. Clin Neurophysiol. 2017 Dec;128(12):2428–35. PMID: 29096216; PMCID: PMC5700118.CrossRefGoogle ScholarPubMed

References

Wong, DS, Poskitt, KJ, Chau, V, et al. Brain injury patterns in hypoglycemia in neonatal encephalopathy. Am J Neuroradiol. 2013;34(7):1456–61.CrossRefGoogle ScholarPubMed
Tam, EWY, Widjaja, E, Blaser, SI, et al. Occipital lobe injury and cortical visual outcomes after neonatal hypoglycemia. Pediatrics. 2008;122:507–12.CrossRefGoogle ScholarPubMed
Udani, V, Munot, P, Ursekar, M, Gupta, S. Neonatal hypoglycemic brain injury – a common cause of infantile-onset remote symptomatic epilepsy. Indian J Pediatr. 2009;46:127–32.Google ScholarPubMed
Duvanel, CB, Fawer, CL, Cotting, J, Hohlfeld, P, Matthieu, JM. Long-term effects of neonatal hypoglycemia on brain growth and psychomotor development in small-for-gestational-age preterm infants. J Pediatr. 1999;134:492–8.Google Scholar
Harris, DL, Weston, PJ, Williams, CE, et al. Cot-side electroencephalography monitoring is not clinically useful in the detection of mild neonatal hypoglycemia. J Pediatr. 2011;159(5):755–60.CrossRefGoogle Scholar
Caraballo, RH, Sakr, D, Mozzi, M, et al. Symptomatic occipital lobe epilepsy following neonatal hypoglycemia. Pediatr Neurol. 2004;31(1):24–9.CrossRefGoogle ScholarPubMed
Fong, CY, Harvey, AS. Variable outcome for epilepsy after neonatal hypoglycaemia. Dev Med Child Neurol. 2014;56(11):1093–9.CrossRefGoogle ScholarPubMed
Montassir, H, Maegaki, Y, Ohno, K, Ogura, K. Long term prognosis of symptomatic occipital lobe epilepsy secondary to neonatal hypoglycemia. Epilepsy Res. 2010;88(2–3):93–9.CrossRefGoogle ScholarPubMed

References

AlOtaibi, SF, Blaser, S, MacGregor, DL. Neurological complications of kernicterus. Can J Neurol Sci. 2005 Aug;32(3):311–15.Google ScholarPubMed
Gourley, GR. Bilirubin metabolism and kernicterus. Adv Pediatr. 1997; 44:173229.Google ScholarPubMed

References

Allen, NM, Mannion, M, Conroy, J, et al. The variable phenotypes of KCNQ-related epilepsy. Epilepsia. 2014 Sep;55(9):e99105. PMID: 25052858.CrossRefGoogle ScholarPubMed
Pisano, T, Numis, AL, Heavin, SB, et al. Early and effective treatment of KCNQ2 encephalopathy. Epilepsia. 2015 May;56(5):685–91. PMID: 25880994.CrossRefGoogle ScholarPubMed
Shellhaas, RA, Wusthoff, CJ, Tsuchida, TN, et al.; Neonatal Seizure Registry. Profile of neonatal epilepsies: Characteristics of a prospective US cohort. Neurology. 2017 Aug 29;89(9):893–9. PMID: 28733343; PMCID: PMC5577964.CrossRefGoogle ScholarPubMed

References

Davis, PE, Filip-Dhima, R, Sideridis, G, et al.; Tuberous Sclerosis Complex Autism Center of Excellence Research Network. Presentation and diagnosis of tuberous sclerosis complex in infants. Pediatrics. 2017 Dec;140(6):e20164040. PMID: 29101226; PMCID: PMC5703775.Google Scholar
Miller, SP, Tasch, T, Sylvain, M, et al. Tuberous sclerosis complex and neonatal seizures. J Child Neurol. 1998 Dec;13(12):619–23. PMID: 9881532.CrossRefGoogle ScholarPubMed
Datta, AN, Hahn, CD, Sahin, M. Clinical presentation and diagnosis of tuberous sclerosis complex in infancy. J Child Neurol. 2008 Mar;23(3):268–73. PMID: 18230839.CrossRefGoogle ScholarPubMed

References

Flores-Sarnat, L. Hemimegalencephaly: part 1. Genetic, clinical, and imaging aspects. J Child Neurol. 2002 May;17(5):373–84. PMID: 12150586.Google Scholar
D’Agostino, MD, Bastos, A, Piras, C, et al. Posterior quadrantic dysplasia or hemi-hemimegalencephaly: a characteristic brain malformation. Neurology. 2004 Jun 22;62(12):2214–20. PMID: 15210885.CrossRefGoogle ScholarPubMed
Di Rocco, C, Battaglia, D, Pietrini, D, Piastra, M, Massimi, L. Hemimegalencephaly: clinical implications and surgical treatment. Childs Nerv Syst. 2006 Aug;22(8):852–66. PMID: 16821075.CrossRefGoogle ScholarPubMed
Honda, R, Kaido, T, Sugai, K, et al. Long-term developmental outcome after early hemispherotomy for hemimegalencephaly in infants with epileptic encephalopathy. Epilepsy Behav. 2013 Oct;29(1):30–5. PMID: 23933627.CrossRefGoogle ScholarPubMed

References

Abend, N, Jensen, F, Inder, T, Volpe, J. Neonatal seizures. In Volpe, J, Inder, T, Darras, B, et al., editors. Volpe’s Neurology of the Newborn, 6th ed. Philadelphia: Elsevier; 2018, pp. 275321.Google Scholar
Cilio, MR Neonatal epilepsies and epileptic encephalopathies. In Nagarajan, L, editor.Neonatal Seizures: Current Management, Future Challenges. London: Mac Keith Press; 2016, pp. 100–13.Google Scholar
Beal, JC, Cherian, K, Moshe, SL. Early-onset epileptic encephalopathies: Ohtahara syndrome and early myoclonic encephalopathy. Pediatr Neurol. 2012 Nov;47(5):317–23.CrossRefGoogle ScholarPubMed
Kim, HJ, Yang, D, Kim, SH, et al. Clinical characteristics of KCNQ2 encephalopathy. Brain Dev. 2021 Feb;43(2): 244–50.CrossRefGoogle ScholarPubMed

References

Klouwer, FC, Berendse, K, Ferdinandusse, S, et al. Zellweger spectrum disorders: clinical overview and management approach. Orphanet J Rare Dis. 2015;10:151.CrossRefGoogle ScholarPubMed
Braverman, NE, Raymond, GV, Rizzo, WB, et al. Peroxisome biogenesis disorders in the Zellweger spectrum: an overview of current diagnosis, clinical manifestations, and treatment guidelines. Mol Genet Metab. 2016 Mar;117(3):313–21.CrossRefGoogle ScholarPubMed
Lee, PR, Raymond, GV. Child neurology: Zellweger syndrome. Neurology. 2013;80(20):e207–10.Google Scholar
Govaerts, L, Colon, E, Rotteveel, J, Monnens, L. A neurophysiological study of children with the cerebro-hepato-renal syndrome of Zellweger. Neuropediatrics. 1985;16(4):185–90.CrossRefGoogle ScholarPubMed
Panjan, DP, Meglic, NP, Neubauer, D. A case of Zellweger syndrome with extensive MRI abnormalities and unusual EEG findings. Clin Electroencephalogr. 2001;32(1):2831.CrossRefGoogle ScholarPubMed

References

Gospe, SM, Jr. (2014) Pyridoxine-dependent epilepsy. In Pagon, RA, Adam, MP, Ardinger, HH, et al., editors. GeneReviews ® [Internet]. Seattle: University of Washington; 1993–2015. 2001 Dec 07 [updated 2014 Jun 19]Google Scholar
Coughlin, CR 2nd, van Karnebeek, CD, Al-Hertani, W, et al. Triple therapy with pyridoxine, arginine supplementation and dietary lysine restriction in pyridoxine-dependent epilepsy: neurodevelopmental outcome. Mol Genet Metab. 2015;116:3543.CrossRefGoogle ScholarPubMed
Jain-Ghai, S, Mishra, N, Hahn, C, Blaser, S, Mercimek-Mahmutoglu, S. Fetal onset ventriculomegaly and subependymal cysts in a pyridoxine dependent epilepsy patient. Pediatrics. 2014;133(4):E1092–E96.Google Scholar

References

Olischar, M, Shany, E, Aygün, C, et al. Amplitude-integrated electroencephalography in newborns with inborn errors of metabolism. Neonatology. 2012;102(3):203–11. PMID: 22797054.Google Scholar
Schreiber, J, Chapman, KA, Summar, ML, et al. Neurologic considerations in propionic acidemia. Mol Genet Metab. 2012 Jan;105(1):1015. doi: PMID: 22078457.CrossRefGoogle ScholarPubMed
Wiwattanadittakul, N, Prust, M, Gaillard, WD, et al. The utility of EEG monitoring in neonates with hyperammonemia due to inborn errors of metabolism. Mol Genet Metab. 2018 Nov;125(3):235–40. PMID: 30197275.Google Scholar

References

Ohtahara, S, Yamatogi, Y. Epileptic encephalopathies in early infancy with suppression-burst. J Clin Neurophysiol. 2003;20:398407.Google Scholar
Beal, JC, Cherian, K, Moshe, SL. Early-onset epileptic encephalopathies: Ohtahara syndrome and early myoclonic encephalopathy. Pediatr Neurol. 2012;47:317–23.Google Scholar
Rossi, S, Daniele, I, Bastrenta, P, Mastrangelo, M, Lista, G. Early myoclonic encephalopathy and nonketotic hyperglycinemia. Pediatr Neurol. 2009;41:371–4.CrossRefGoogle ScholarPubMed

References

Shellhaas, RA, Chang, T, Tsuchida, T, et al. The American Clinical Neurophysiology Society’s Guideline on Continuous Electroencephalography Monitoring in Neonates. J Clin Neurophysiol. 2011;28(6):611–17.CrossRefGoogle ScholarPubMed
Tsuchida, TN, Wusthoff, CJ, Shellhaas, RA, et al. American Clinical Neurophysiology Society standardized EEG terminology and categorization for the description of continuous EEG monitoring in neonates: report of the American Clinical Neurophysiology Society Critical Care Monitoring Committee. J Clin Neurophysiol. 2013;30(2):161–73.CrossRefGoogle ScholarPubMed

References

Shellhaas, RA, Chang, T, Tsuchida, T, et al. The American Clinical Neurophysiology Society’s Guideline on Continuous Electroencephalography Monitoring in Neonates. J Clin Neurophysiol. 2011;28(6):611–17.Google Scholar
Herman, ST, Abend, NS, Bleck, TP, et al; Critical Care Continuous EEG Task Force of the American Clinical Neurophysiology Society. Consensus statement on continuous EEG in critically ill adults and children, part I: indications. J Clin Neurophysiol. 2015a;32(2):8795.CrossRefGoogle ScholarPubMed
Herman, ST, Abend, NS, Bleck, TP, et al Consensus statement on continuous EEG in critically ill adults and children, part II: personnel, technical specifications, and clinical practice. J Clin Neurophysiol. 2015b;32(2):96108.Google Scholar

References

Topjian, AA, de Caen, A, Wainwright, MS, et al. Pediatric post-cardiac arrest care: a scientific statement from the American Heart Association. Circulation. 2019 Aug 6;140(6):e194e233. PMID: 31242751.Google Scholar

References

Cardenas, J, Rho, J, Kirton, A. Pediatric stroke. Childs Nerv Syst. 2011;27:1375–90.CrossRefGoogle ScholarPubMed
Dlamini, N, Billinghurst, L, Kirkham, F. Cerebral venous sinus (sinovenous) thrombosis in children. Neurosurg Clin N Am. 2010;21:511–27.Google Scholar
Ichord, R, Benedict, SL, Chan, AK, Kirkham, FJ, Nowak-Göttl, U; International Paediatric Stroke Study Group. Pediatric cerebral sinovenous thrombosis: findings of the international pediatric stroke study. Arch Dis Child. 2015;100(2):174–9.CrossRefGoogle Scholar
Moharir, M, Shroff, M, Stephens, D, et al. Anticoagulants in pediatric cerebral sinovenous thrombosis a safety and outcome study. Ann Neurol. 2010;67:590–9.Google Scholar
Niedermeyer, E. Cerebrovascular disorders and EEG. In Electroencephalography Basic Principles, Clinical Applications and Related Fields. Philadelphia: Lippincott Williams & Wilkins; 2005, pp. 33962.Google Scholar

References

Kaufman, KR, Zuber, N, Rueda-Lara, MA, Tobia, A. MELAS with recurrent complex partial seizures, nonconvulsive status epilepticus, psychosis, and behavioral disturbances: case analysis with literature review. Epilepsy Behav. 2010 Aug;18(4):494–7.CrossRefGoogle ScholarPubMed
Ribacoba, R, Salas-Puig, J, González, C, Astudillo, A. Characteristics of status epilepticus in MELAS. Analysis of four cases. Neurologia. 2006 Jan-Feb;21(1):111.Google Scholar
Demarest, ST, Whitehead, MT, Turnacioglu, S, Pearl, PL, Gropman, AL. Phenotypic analysis of epilepsy in the mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes-associated mitochondrial DNA A3243G mutation. J Child Neurol. 2014 Sep;29(9):1249–56.Google Scholar
Karkare, S, Merchant, S, Solomon, G, Engel, M, Kosofsky, B. MELAS with A3243G mutation presenting with occipital status epilepticus. J Child Neurol. 2009 Dec;24(12):1564–7.Google Scholar

References

Fullerton, HJ, Achrol, AS, Johnston, SC, et al.; UCSF BAVM Study Project. Long-term hemorrhage risk in children versus adults with brain arteriovenous malformations. Stroke. 2005 Oct;36(10):2099–104. PMID: 16141419.Google Scholar
Garcin, B, Houdart, E, Porcher, R, et al. Epileptic seizures at initial presentation in patients with brain arteriovenous malformation. Neurology. 2012 Feb 28;78(9):626–31. PMID: 22345217.Google Scholar
Hemphill, JC 3rd, Greenberg, SM, Anderson, CS, et al.; American Heart Association Stroke Council; Council on Cardiovascular and Stroke Nursing; Council on Clinical Cardiology. Guidelines for the management of spontaneous intracerebral hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2015 Jul;46(7):2032–60. PMID: 26022637.Google Scholar

References

Arndt, DH, Lerner, JT, Matsumoto, JH, et al. Subclinical early posttraumatic seizures detected by continuous EEG monitoring in a consecutive pediatric cohort. Epilepsia. 2013;54(10):1780–8.Google Scholar
Liesemer, K, Bratton, SL, Zebrack, CM, Brockmeyer, D, Statler, KD. Early post-traumatic seizures in moderate to severe pediatric traumatic brain injury: rates, risk factors, and clinical features. J Neurotrauma. 2011;28(5):755–62.Google Scholar
Vaewpanich, J, Reuter-Rice, K. Continuous electroencephalography in pediatric traumatic brain injury: Seizure characteristics and outcomes. Epilepsy Behav. 2016;62:225–30.Google Scholar
Ramachandrannair, R, Sharma, R, Weiss, SK, Cortez, MA. Reactive EEG patterns in pediatric coma. Pediatr Neurol. 2005;33(5):345–9.Google Scholar

References

Hirsch, L, Brenner, R. Atlas of EEG in Critical Care. Wiley-Blackwell; 2011.Google Scholar

References

Arndt, DH, Lerner, JT, Matsumoto, JH, et al. Subclinical early posttraumatic seizures detected by continuous EEG monitoring in a consecutive pediatric cohort. Epilepsia. 2013;54(10):1780–8.Google Scholar
Nadlonek, NA, Acker, SN, Bensard, DD, Bansal, S, Partrick, DA. Early diffuse slowing on electroencephalogram in pediatric traumatic brain injury: impact on management and prognosis. J Pediatr Surg. 2015;50:1338–40.CrossRefGoogle ScholarPubMed
O’Neill, BR, Handler, MH, Tong, S, Chapman, KE. Incidence of seizures on continuous EEG monitoring following traumatic brain injury in children. J Neurosurg Pediatr. 2015;16:167–76.Google Scholar
Arndt, DH, Goodkin, HP, Giza, CC. Early posttraumatic seizures in the pediatric population. J Child Neurol. 2016;31(1):4656.Google Scholar
Vaewpanich, J, Reuter-Rice, K. Continuous electroencephalography in pediatric traumatic brain injury: seizure characteristics and outcomes. Epilepsy Behav. 2016;62:225–30.CrossRefGoogle ScholarPubMed

References

Wang, KC, Kim, SK, Seol, HJ, Cho, BK. Moyamoya disease in young children. In Cho, BK, Tominaga, T, editors. Moyamoya Disease Update. Springer; 2010.Google Scholar
Maki, Y, Enomoto, T. Moyamoya disease. Childs Nerv Syst. 1988;4:204–12.CrossRefGoogle ScholarPubMed
Matsushima, Y, Aoyagi, M, Masaoka, H, et al. Mental outcome following encephaloduroarterio-synangiosis in children with Moyamoya disease with the onset earlier than 5 years of age. Childs Nerv Syst. 1990;6:440–43.Google Scholar
Kim, SK, Seol, HJ, Cho, BK, et al. Moyamoya disease among young patients: its aggressive clinical course and the role of active surgical treatment. Neurosurgery. 2004;54:840–4.Google Scholar
Foreman, B, Claassen, J. Quantitative EEG for the detection of brain ischemia. Crit Care. 2012;16(2):216.Google Scholar

References

Schmitt, SE, Pargeon, K, Frechette, ES, et al. Extreme delta brush: a unique EEG pattern in adults with anti-NMDA receptor encephalitis. Neurology. 2012 Sep 11;79(11):1094–100.Google Scholar
Quek, AM, Britton, JW, McKeon, A, et al. Autoimmune epilepsy: clinical characteristics and response to immunotherapy. Arch Neurol. 2012 May;69(5):582–93.Google Scholar

References

Kramer, U, Chi, CS, Lin, KL, et al. Febrile infection-related epilepsy syndrome (FIRES): pathogenesis, treatment, and outcome: a multicenter study on 77 children. Epilepsia. 2011;52(11):1956–65.Google Scholar
Kenney-Jung, DL, Vezzani, A, Kahoud, RJ, et al. Febrile infection-related epilepsy syndrome treated with anakinra. Ann Neurol. 2016;80(6):939–45.Google Scholar
Kramer, U, Chi, CS, Lin, KL, et al. Febrile infection-related epilepsy syndrome (FIRES): does duration of anesthesia affect outcome? Epilepsia. 2011; 52(Suppl 8):2830.Google Scholar
Chong, DJ, Hirsch, LJ. Which EEG patterns warrant treatment in the critically ill? Reviewing the evidence for treatment of periodic epileptiform discharges and related patterns. J Clin Neurophysiol. 2005;22(2):7991.Google Scholar
Hirsch, LJ, Claassen, J, Mayer, SA, Emerson, RG. Stimulus-induced rhythmic, periodic, or ictal discharges (SIRPIDs): a common EEG phenomenon in the critically ill. Epilepsia. 2004;45(2):109–23.Google Scholar

References

Darbari, FP, Melvin, JJ, Piatt, JH, Jr., Adirim, TA, Kothare, SV. Intrathecal baclofen overdose followed by withdrawal: clinical and EEG features. Pediatr Neurol. 2005;33(5):373–7.Google Scholar
Kumar, G, Sahaya, K, Goyal, MK, Sivaraman, M, Sahota, PK. Electroencephalographic abnormalities in baclofen-induced encephalopathy. J Clin Neurosci. 2010;17(12):1594–6.Google Scholar
Skjei, KL, Kessler, SK, Abend, NS. Stimulus-induced rhythmic, periodic, or ictal discharges in a 13-year-old girl after an overdose and respiratory arrest. Pediatr Neurol. 2011;45(5):350–1.Google Scholar

Reference

Milligan, B, Meyer, F. Morbidity of transcallosal and transcortical approaches to lesions in and around the lateral and third ventricles: a single-institution experience. Neurosurgery. 2010;67(6):1483.CrossRefGoogle ScholarPubMed

References

Demchuk, AM, Burgin, WS, Christou, I, et al. Thrombolysis in brain ischemia (TIBI) transcranial Doppler flow grades predict clinical severity, early recovery, and mortality in patients treated with intravenous tissue plasminogen activator. Stroke. 2001 Jan;32(1):8993.Google Scholar
Appavu, BL, Temkit, MH, Foldes, ST, et al. Quantitative electroencephalography after pediatric anterior circulation stroke. J Clin Neurophysiol. 2020 Dec 29; Online ahead of print.Google Scholar
Foreman, B, Claassen, J. Quantitative EEG for the detection of brain ischemia. Crit Care. 2012 Dec 12;16(2):216.Google Scholar

References

Reynolds, AS, Brush, B, Schiano, T, Reilly, K, Dangayach, NS. Neurological monitoring in acute liver failure. Hepatology. 2019 Nov;70(5):1830–5.CrossRefGoogle ScholarPubMed
Rashke, RA, Curry, SC, Rempe, S, et al. Results of a protocol for management of patients with fulminant liver failure. Crit Care Med. 2008;36:2244–8.Google Scholar
Rangel-Castillo, L, Gopinath, S, Robertson, CS. Management of intracranial hypertension. Neurol Clin. 2008 May;26(2):521–41.Google Scholar
O’Brien, NF, Maa, T, Reuter-Rice, K. Noninvasive screening for intracranial hypertension in children with acute, severe traumatic brain injury. J Neurosurg Pediatr. 2015 Oct;16(4):420–5.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×