Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T04:58:34.054Z Has data issue: false hasContentIssue false

15 - Developmental dysregulation of the dopamine system and the pathophysiology of schizophrenia

Published online by Cambridge University Press:  04 August 2010

Anthony A. Grace
Affiliation:
University of Pittsburgh, Pittsburgh, USA
Matcheri S. Keshavan
Affiliation:
University of Pittsburgh
James L. Kennedy
Affiliation:
Clarke Institute of Psychiatry, Toronto
Robin M. Murray
Affiliation:
Institute of Psychiatry, London
Get access

Summary

Evidence suggests that the dopamine (DA) system plays a key role in the pathophysiology and treatment of schizophrenia. Therefore, drugs that increase DA transmission are known to exacerbate this disorder and mimic paranoid psychosis in normal individuals, and drugs that are effective antipsychotic agents all have DA receptor-blocking properties in common. Substantial evidence exists to suggest that the pathological processes contributing to schizophrenia occur early in life, supporting the contention that schizophrenia is a developmental disorder. This chapter presents a model whereby stress is proposed to interact with an existing pathology within the limbic system to cause the delayed emergence of the positive symptoms of schizophrenia. The involvement of stress is demonstrated by the finding that, of the children at risk for developing schizophrenia, those that do go on to show the pathology exhibit higher levels of anxiety and stress premorbidly.
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abercrombie, E. D., Jacobs, B. L. (1987). Single-unit response of noradrenergic neurons in the locus coeruleus of freely moving cats. I. Acutely presented stressful and nonstressful stimuli. J Neurosci 7: 2837–2843CrossRefGoogle ScholarPubMed
Abercrombie, E. D., Keller, R. W. Jr., Zigmond, M. J. (1988). Characterization of hippocampal norepinephrine release as measured by microdialysis perfusion: pharmacological and behavioral studies. Neuroscience 27: 897–904CrossRefGoogle ScholarPubMed
Abercrombie, E. D., Keefe, K. A., DiFrischia, D. S., Zigmond, M. J., (1989). Differential effect of stress on in vivo dopamine release in striatum, nucleus accumbens, and medial frontal cortex. J Neurochem 52: 1655–1658CrossRefGoogle ScholarPubMed
Akil, M., Pierri, J. N., Whitehead, R. E.et al. (1999). Lamina-specific alterations in the dopamine innervation of the prefrontal cortex in schizophrenic subjects. Am J Psychatry 156: 1580–1589CrossRefGoogle ScholarPubMed
Angrist, B., Santhananthan, G., Wilk, S., Gershon, S. (1974). Amphetamine psychosis: behavioral and biochemical aspects. J. Psychiatr Res 11: 13–23CrossRefGoogle ScholarPubMed
Angrist, B., Rotrosen, J., Gershon, S. (1980). Differential effects of amphetamine and neuroleptics on negative vs. positive symptoms in schizophrenia. Psychopharmacology 72: 17–19CrossRefGoogle Scholar
Arnold, S. E. (1997). The medial temporal lobe in schizophrenia. J Neuropsychiatry Clin Neurosci 9: 460–470Google Scholar
Arnold, S. E., Trojanowski, J. Q., Gur, R. E.et al. (1998). Absence of neurodegeneration and neural injury in the cerebral cortex in a sample of elderly patients with schizophrenia. Arch Gen Psychiatry 55: 225–232CrossRefGoogle Scholar
Aston-Jones, G., Ennis, M., Pieribone, V. A., Nickell, W. T., Shipley, M. T. (1986). The brain nucleus locus coeruleus: restricted afferent control of a broad efferent network. Science 234: 734–737CrossRefGoogle ScholarPubMed
Bayer, S. A., Altman, J. (1991). Neocortical Development. New York: Raven Press
Bayer, T. A., Falkai, P., Maier, W. (1999). Genetic and non-genetic vulnerability factors in schizophrenia: the basis of the “two hit hypothesis”. J Psychiatr Res 33: 543–548CrossRefGoogle ScholarPubMed
Bertolino, A., Knable, M. B., Saunders, R. C.et al. (1999). The relationship between dorsolateral prefrontal N-acetylaspartate measures and striatal dopamine activity in schizophrenia. Biol Psychiatry 45: 660–667CrossRefGoogle Scholar
Beuger, M., Kammen, D. P., Kelley, M. E., Yao, J. (1996). Dopamine turnover in schizophrenia before and after haloperidol withdrawal. CSF, plasma, and urine studies, Neuropsychopharmacology 15: 75–86CrossRefGoogle ScholarPubMed
Bilder, R. M., Bogerts, B., Ashtari, M.et al. (1995). Anterior hippocampal volume reductions predict frontal lobe dysfunction in first episode schizophrenia. Schizophr Res 17: 47–58CrossRefGoogle ScholarPubMed
Birley, J., Brown, G. W. (1970). Crisis and life changes preceding the onset or relapse of acute schizophrenia: clinical aspects. Br J Psychiatry 16: 327–333CrossRefGoogle Scholar
Braff, D. L., Grillon, C., Geyer, M. A. (1992). Gating and habituation of the startle reflex in schizophrenic patients. Arch Gen Psychiatry 49: 206–215CrossRefGoogle ScholarPubMed
Breier, A., Buchanan, R. W., Elkashef, A.et al. (1992). Brain morphology and schizophrenia. A magnetic resonance imaging study of limbic, prefrontal cortex, and caudate structures. Arch Gen Psychiatry 49: 921–926CrossRefGoogle ScholarPubMed
Chang, M. S., Sved, A. F., Zigmond, M. J., Austin, M. C. (2000). Increased transcription of the tyrosine hydroxylase gene in individual locus coeruleus neurons following footshock stress. Neuroscience 101: 131–139CrossRefGoogle ScholarPubMed
Chrobak, J. J., Napier, T. C. (1993). Opioid and GABA modulation of accumbens-evoked ventral pallidal activity. J Neur Transm Gen Sect 93: 123–143CrossRefGoogle ScholarPubMed
Cohen, J. D., Servan-Schreiber, D. (1992). Context, cortex and dopamine: a connectionist approach to behavior and biology in schizophrenia. Psychol Rev 99: 45–77CrossRefGoogle Scholar
Correll, C. J., Rosenkranz, J. A., Grace, A. A. (2001). Chronic cold stress alters basal neuronal firing rate and response to acute stressors of basolateral amygdala neurons in rats. Soc Neurosci Abstr 27: 2540Google Scholar
Creese, I., Burt, D. R., Snyder, S. H. (1976). Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science 192: 596–598CrossRefGoogle ScholarPubMed
Cullinan, W. E., Herman, J. P., Helmreich, D. L., Watson, Jr., S. J. (1995). A neuroanatomy of stress. In Neurobiological and Clinical Consequences of Stress: From Normal Adaptation to PTSD, ed. M. J. Friedman, D. S. Charney, A. Y. Deutch. Philadelphia, PA: Lippincott, pp. 3–25
Curtis, A. L., Lechner, S. M., Pavcovich, L. A., Valentino, R. J. (1997). Activation of the locus coeruleus noradrenergic system by intracoerulear microinfusion of corticotropin-releasing factor: effects on discharge rate, cortical norepinephrine levels and cortical electroencephalographic activity. J Pharmacol Exp Ther 281: 163–172Google ScholarPubMed
DeLisi, L. E. (1992). The significance of age of onset for schizophrenia. Schizophr Bull 18: 209–215CrossRefGoogle Scholar
Diamond, A. (1990). The development and neural bases of memory functions as indexed by the AB and delayed response tasks in human infants and infant monkeys. Ann NYAcad Sci 608: 267–309 [Discussion 309–317.]CrossRefGoogle ScholarPubMed
Drevets, W. C. (1999). Prefrontal cortical–amygdalar metabolism in major depression. Ann N Y Acad Sci 877: 614–637CrossRefGoogle ScholarPubMed
Dunn, A. J., Berridge, C. W. (1987). Corticotropin-releasing factor administration elicits a stress-like activation of cerebral catecholaminergic systems. Pharmacol Biochem Behav 27: 685–691CrossRefGoogle ScholarPubMed
Eastwood, S. L., Cairns, N. J., Harrison, P. J. (2000). Synaptophysin gene expression in schizophrenia. Investigation of synaptic pathology in the cerebral cortex. Br J Psychiatry 176: 236–242CrossRefGoogle ScholarPubMed
Edwards, H. (1970). The significance of brain damage in persistent oral dyskinesia. Br J Psychiatry 116: 271–275CrossRefGoogle ScholarPubMed
Emoto, H., Koga, C., Ishii, H.et al. (1993). A CRF antagonist attenuates stress-induced increases in NA turnover in extended brain regions in rats. Brain Res 627: 171–176CrossRefGoogle Scholar
Ennis, M., Shipley, M. T., Aston-Jones, G., Williams, J. T. (1998). Afferent control of nucleus locus ceruleus: differential regulation by “shell” and “core” inputs. Adv Pharmacol 42: 767–771CrossRefGoogle ScholarPubMed
Finlay, J. M., Jedema, H. P., Rabinovic, A. D.et al. (1997). Impact of corticotropin-releasing hormone on extracellular norepinephrine in prefrontal cortex after chronic cold stress. J Neurochem 69: 144–150CrossRefGoogle ScholarPubMed
Floresco, S. B., Todd, C. L., Grace, A. A. (2001). Glutamatergic afferents from the hippocampus to the nucleus accumbens regulate activity of ventral tegmental area dopamine neurons. J Neurosci 21: 4915–4922CrossRefGoogle ScholarPubMed
Floresco, S. B., West, A. R., Ash, B., Moore, H., Grace, A. A., (2003). Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission. Nat Neurosci 6: 968–973CrossRefGoogle ScholarPubMed
Garey, L. J., Ong, W. Y., Patel, T. S.et al. (1998). Reduced dendritic spine density on cerebral cortical pyramidal neurons in schizophrenia. J Neurol Neurosurg Psychiatry 65: 446–453CrossRefGoogle Scholar
Ghajarnia, M., Moore, H., Grace, A. A. (1998). Enhanced behavioral effects of phencyclidine (PCP) in rats with developmental abnormalities of the temporal lobe. Soc Neurosci Abstr 24: 2177Google Scholar
Glantz, L. A., Lewis, D. A. (1997). Reduction of synaptophysin immunoreactivity in the prefrontal cortex of subjects with schizophrenia. Regional and diagnostic specificity. Arch Gen Psychiatry 54: 943–952CrossRefGoogle ScholarPubMed
Goddard, A. W., Charney, D. S. (1997). Toward an integrated neurobiology of panic disorder. J Clin Psychiatry 58(Suppl. 2): 4–11Google ScholarPubMed
Goff, D. C., Coyle, J. T. (2001). The emerging role of glutamate in the pathophysiology and treatment of schizophrenia. Am J Psychiatry 158: 1367–1377CrossRefGoogle ScholarPubMed
Goldman, P. S., Rosvold, H. E. (1972). The effects of selective caudate lesions in infant and juvenile rhesus monkeys. Brain Res 43: 53–66CrossRefGoogle ScholarPubMed
Goldman-Rakic, P. S. (1995). Cellular basis of working memory. Neuron 14: 477–485CrossRefGoogle ScholarPubMed
Goldman-Rakic, P. S. (1996). Regional and cellular fractionation of working memory. Proc Natl Acad Sci USA 93: 13473–13480CrossRefGoogle ScholarPubMed
Goldman-Rakic, P. S. (1999). The physiological approach: functional architecture of working memory and disordered cognition in schizophrenia. Biol Psychiatry 46: 650–661CrossRefGoogle ScholarPubMed
Grace, A. A. (1991). Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience 41: 1–24CrossRefGoogle ScholarPubMed
Grace, A. A. (2000). Gating of information flow within the limbic system and the pathophysiology of schizophrenia. [In Proceedings from the Nobel Symposium – Schizophrenia: Pathophysiological Mechanisms.] Brain Res Rev 31: 330–361. Online at Brain Research Interactive:http://www.elsevier.nl/gej-ng/29/19/30/26/43/article.htmlGoogle ScholarPubMed
Grace, A. A., Moore, H. (1998). Regulation of information flow in the accumbens: a model for the pathophysiology of schizophrenia. In Origins and Development of Schizophrenia: Advances in Experimental Psychopathology, ed. M. F. Lenzenweger, R. H. Dworkin. Washington, DC: American Psychological Association Press, pp. 123–157CrossRef
Grace, A. A., Bunney, B. S., Moore, H., Todd, C. L. (1997). Dopamine cell depolarization block as a model for the therapeutic actions of antipsychotic drugs. Trends Neurosci 20: 31–37CrossRefGoogle Scholar
Gunne, L. M., Growdon, J., Glaeser, B. (1982). Oral dyskinesia in rats following brain lesions and neuroleptic drug administration. Psychopharmacology 77: 134–139CrossRefGoogle ScholarPubMed
Harden, D. G., King, D., Finlay, J., Grace, A. A. (1998). Depletion of dopamine in the prefrontal cortex decreases the basal electrophysiological activity of mesolimbic dopamine neurons. Brain Res 794: 96–102CrossRefGoogle ScholarPubMed
Harrison, P. J. (1999). The neuropathology of schizophrenia. A critical review of the data and their interpretation. Brain 122: 593–624CrossRefGoogle ScholarPubMed
Herman, J. P., Cullinan, W. E. (1997). Neurocircuitry of stress: central control of the hypothalamo–pituitary–adrenocortical axis. Trends Neurosci 20: 78–84CrossRefGoogle ScholarPubMed
Hoschl, C., Hajek, T. (2001). Hippocampal damage mediated by corticosteroids: a neuropsychiatric research challenge. Eur Arch Psychiatry Clin Neurosci 251(Suppl. 2): 81–88CrossRefGoogle ScholarPubMed
Imperato, A., Puglisi-Allegra, S., Casolini, P., Zocchi, A., Angelucci, L. (1989). Stress-induced enhancement of dopamine and acetylcholine release in limbic structures: role of corticosterone. Eur J Pharmacol 165: 337–338CrossRefGoogle ScholarPubMed
Jedema, H. P., Grace, A. A. (2003). Chronic exposure to cold stress alters electrophysiological properties of locus coeruleus neurons recorded in vitro. Neuropsychopharmacology 28: 63–72CrossRefGoogle ScholarPubMed
Jentsch, J. D., Roth, R. H. (1999). The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 20: 201–225CrossRefGoogle ScholarPubMed
Jones, E. G. (1997). Cortical development and thalamic pathology in schizophrenia. Schizophr Bull 23: 483–501CrossRefGoogle Scholar
Kalin, N. H. (1985). Behavioral effects of ovine corticotropin-releasing factor administered to rhesus monkeys. Fed Proc 44: 249–253Google ScholarPubMed
Kelley, A. E., Delfs, J. M. (1994). Excitatory amino acid receptors mediate the orofacial stereotypy elicited by dopaminergic stimulation of the ventrolateral striatum. Neuroscience 60: 85–95CrossRefGoogle ScholarPubMed
Kelley, A. E., Swanson, C. J. (1997). Feeding induced by blockade of AMPA and kainate receptors within the ventral striatum: a microinfusion mapping study. Behav Brain Res 89: 107–113CrossRefGoogle ScholarPubMed
Kendler, K. (1983). Overview: a current perspective on twin studies of schizophrenia. Am J Psychiatry 140: 1413–1425Google ScholarPubMed
King, D., Zigmond, M. J., Finlay, J. M. (1997). Effects of dopamine depletion in the medial prefrontal cortex on the stress-induced increase in extracellular dopamine in the nucleus accumbens core and shell. Neuroscience 77: 141–153CrossRefGoogle ScholarPubMed
Laruelle, M. (2000). The role of endogenous sensitization in the pathophysiology of schizophrenia: implications from recent brain imaging studies. Brain Res Rev 31: 371–384CrossRefGoogle ScholarPubMed
Laruelle, M., Abi-Dargham, A. (1999). Dopamine as the wind of the psychotic fire: new evidence from brain imaging studies. J Psychopharmacol 13: 358–371CrossRefGoogle ScholarPubMed
Lavin, A., Grace, A. A. (1997). Effects of afferent stimulation and DA application on prefrontal cortical cells recorded intracellularly in vivo: comparisons between intact rats and rats with pharmacologically-induced disruption of cortical development. Soc Neurosci Abstr 23: 2080Google Scholar
Lawrie, S. M., Abukmeil, S. S. (1998). Brain abnormality in schizophrenia. A systematic and quantitative review of volumetric magnetic resonance imaging studies. Br J Psychiatry 172: 110–120CrossRefGoogle ScholarPubMed
Lechner, S. M., Curtis, A. L., Brons, R., Valentino, R. J. (1997). Locus coeruleus activation by colon distention: role of corticotropin-releasing factor and excitatory amino acids. Brain Res 756: 114–124CrossRefGoogle ScholarPubMed
LeDoux, J. E. (2000). Emotion circuits in the brain. Annu Rev of Neurosci 23: 155–184CrossRefGoogle Scholar
Lewis, D. A. (1997). Development of the prefrontal cortex during adolescence: insights into vulnerable neural circuits in schizophrenia. Neuropsychopharmacology 16: 385–398CrossRefGoogle Scholar
Lewis, D. A., Levitt, P. (2002). Schizophrenia as a disorder of neurodevelopment. Annu Rev Neurosci 25: 409–432CrossRefGoogle ScholarPubMed
Liddle, P. F., Friston, K. J., Frith, C. D., Frackowiak, R. S. (1992). Cerebral blood flow and mental processes in schizophrenia. J Roy Soc Med 85: 224–227Google Scholar
Lipska, B. K., Weinberger, D. R. (2000). To model a psychiatric disorder in animals: schizophrenia as a reality test. Neuropsychopharmacology 23: 223–239CrossRefGoogle Scholar
Lipska, B. K., Jaskiw, G. E., Weinberger, D. (1993). Postpubertal emergence of hyperresponsiveness to stress and to amphetamine after neonatal hippocampal damage: a potential animal model of schizophrenia. Neuropsychopharmacology 9: 67–75CrossRefGoogle ScholarPubMed
Mana, M. J., Grace, A. A. (1997). Chronic cold stress alters the basal and evoked electrophysiological activity of rat locus coeruleus neurons. Neuroscience 81: 1055–1064CrossRefGoogle ScholarPubMed
Mayer, M. L., Westbrook, G. L., Guthrie, P. B. (1984). Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature 309: 261–263CrossRefGoogle ScholarPubMed
McCarley, R. W., Wible, C. G., Frumin, M.et al. (1999). MRI anatomy of schizophrenia. Biol Psychiatry 45: 1099–1119CrossRefGoogle ScholarPubMed
McDonald, C., Murray, R. M. (2000). Early and late environmental risk factors for schizophrenia. Brain Res Rev 31: 130–137CrossRefGoogle Scholar
McEwen, B. S. (1998). Protective and damaging effects of stress mediators. N Engl J Med 338: 171–179CrossRefGoogle ScholarPubMed
McKernan, M. G., Shinnick-Gallagher, P. (1997). Fear conditioning induces a lasting potentiation of synaptic currents in vitro. Nature 390: 607–611CrossRefGoogle ScholarPubMed
Meyer-Lindenberg, A., Poline, J. B., Kohn, P. D.et al. (2001). Evidence for abnormal cortical functional connectivity during working memory in schizophrenia. Am J Psychiatry 158: 1809–1817CrossRefGoogle Scholar
Mirnics, K., Middleton, F. A., Marquez, A., Lewis, D. A., Levitt, P. (2000). Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex. Neuron 28: 53–67CrossRefGoogle ScholarPubMed
Moore, H., Grace, A. A. (1997). Anatomical changes in limbic structures produced by methylazoxymethanol acetate (MAM) during brain development are associated with changes in physiological interactions among afferents to the nucleus accumbens. Soc Neurosci Abstr 23: 2378Google Scholar
Moore, H., Ghajarnia, M., Geyer, M., Jentsch, J. D., Grace, A. A. (2001a). Selective disruption of prefrontal and limbic corticostriatal circuits by prenatal exposure to the DNA methylation agent methylazoxymethanol acetate (MAM): anatomical, neurophysiological and behavioral studies. Schizophr Res 49(Suppl. 1–2): 48Google Scholar
Moore, H., Rose, H. J., Grace, A. A. (2001b). Chronic cold stress reduces the spontaneous activity of ventral tegmental dopamine neurons. Neuropsychopharmacology 24: 410–419CrossRefGoogle Scholar
Nagata, Y., Matsumoto, H. (1969). Studies on methylazoxymethanol: methylation of nucleic acids in the fetal rat brain. Proc Soc Exp Biol Med 132: 383–385CrossRefGoogle ScholarPubMed
Ninan, P. T. (1999). The functional anatomy, neurochemistry, and pharmacology of anxiety. J Clin Psychiatry 60(Suppl. 22): 12–17Google ScholarPubMed
Nirenberg, M. J., Chan, J., Pohorille, A.et al. (1997). The dopamine transporter: comparative ultrastructure of dopaminergic axons in limbic and motor compartments of the nucleus accumbens. J Neurosci 17: 6899–6907CrossRefGoogle ScholarPubMed
Norman, R. M., Malla, A. K. (1993a). Stressful life events and schizophrenia: I. A review of the research. Br J Psychiatry 162: 161–166CrossRefGoogle Scholar
Norman, R. M., Malla, A. K. (1993b). Stressful life events and schizophrenia: II. Conceptual and methodological issues. Br J Psychiatry 162: 166–174CrossRefGoogle Scholar
O'Donnell, P., Grace, A. A. (1995). Synaptic interactions among excitatory afferents to nucleus accumbens neurons: hippocampal gating of prefrontal cortical input. J Neurosci 15: 3622–3639CrossRefGoogle ScholarPubMed
Olney, J. W., Farber, N. B. (1995). NMDA antagonists as neurotherapeutic drugs, psychotogens, neurotoxins, and research tools for studying schizophrenia. Neuropsychopharmacology 13: 335–345CrossRefGoogle ScholarPubMed
Ono, T., Nishijo, H., Uwano, T. (1995). Amygdala role in conditioned associative learning. Prog Neurobiol 46: 401–423CrossRefGoogle ScholarPubMed
Page, M. E., Abercrombie, E. D. (1999). Discrete local application of corticotropin-releasing factor increases locus coeruleus discharge and extracellular norepinephrine in rat hippocampus. Synapse 33: 304–3133.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Pantelis, C., Velakoulis, D., McGorry, P. D.et al. (2003). Neuroanatomical abnormalities before and after onset of psychosis: a cross-sectional and longitudinal MRI comparison. Lancet 361: 281–288CrossRefGoogle ScholarPubMed
Pare, D., Collins, D. R. (2000). Neuronal correlates of fear in the lateral amygdala: multiple extracellular recordings in conscious rats. J Neurosci 20: 2701–2710CrossRefGoogle Scholar
Phillips, L. J., Velakoulis, D., Pantelis, C.et al. (2002). Non-reduction in hippocampal volume is associated with higher risk of psychosis. Schizophr Res 58: 145–158CrossRefGoogle ScholarPubMed
Pilowsky, L. S., Kerwin, R. W., Murray, R. M. (1993). Schizophrenia: a neurodevelopmental perspective. Neuropsychopharmacology 9: 83–91CrossRefGoogle ScholarPubMed
Pitkanen, A., Savander, V., LeDoux, J. E. (1997). Organization of intra-amygdaloid circuitries in the rat: an emerging framework for understanding functions of the amygdala. Trends Neurosci 20: 517–523CrossRefGoogle ScholarPubMed
Post, R. M., Fink, E., Carpenter, W. T., Goodwin, F. K. (1975). Cerebrospinal fluid amine metabolites in acute schizophrenia. Arch Gen Psychiatry 32: 1063–1069CrossRefGoogle ScholarPubMed
Ramsooksingh, M. D., Jedema, H. P., Moore, H., Sved, A. F., Grace, A. A. (2001). The effects of chronic stress on the regulation of locus coeruleus neurons by peripheral, limbic, and prefrontal cortical inputs. Soc Neurosci Abstr 27: 1961Google Scholar
Ramsooksingh, M. D., Jedema, H. P., Moore, H., Sved, A. F., Grace, A. A. (2002). Chronic cold stress leads to persistent changes in the behavioral response to footshock with coincident changes in evoked spike activity in the locus coeruleus. Soc Neurosci Abstr 28: [Program No.] 669.4Google Scholar
Richfield, E. K., Penney, J. B., Young, A. B. (1989). Anatomical and affinity state comparisons between dopamine D1 and D2 receptors in the rat central nervous system. Neuroscience 30: 767–777CrossRefGoogle ScholarPubMed
Rogan, M. T., Stauble, U. V., LeDoux, J. E. (1997). Fear conditioning induces associative long-term potentiation in the amygdala. Nature 390: 604–607CrossRefGoogle ScholarPubMed
Rosenkranz, J. A., Grace, A. A. (1999). Modulation of basolateral amygdala neuronal firing and afferent drive by dopamine receptor activation in vivo. J Neurosci 19: 11027–11039CrossRefGoogle ScholarPubMed
Rosenkranz, J. A., Grace, A. A. (2001). Dopamine attenuates prefrontal cortical suppression of sensory inputs to the basolateral amygdala of rats. J Neurosci 21: 4090–4103CrossRefGoogle ScholarPubMed
Rosenkranz, J. A., Grace, A. A. (2002a). Cellular mechanisms of infralimbic and prelimbic prefrontal cortical inhibition and dopaminergic modulation of basolateral amygdala neurons in vivo. J Neurosci 22: 324–337CrossRefGoogle Scholar
Rosenkranz, J. A., Grace, A. A. (2002b). Dopamine-mediated modulation of odour-evoked amygdala potentials during Pavlovian conditioning. Nature 417: 282–287CrossRefGoogle Scholar
Sabban, E. L., Kvetnansky, R. (2001). Stress-triggered activation of gene expression in catecholaminergic systems: dynamics of transcriptional events. Trends Neurosci 24: 91–98CrossRefGoogle ScholarPubMed
Sapolsky, R. (1992). Stress, The Aging Brain, and the Mechanisms of Neuron Death. Cambridge, MA: MIT Press
Sapolsky, R., Krey, L., McEwen, B. (1985). Prolonged glucocorticoid exposure reduces hippocampal neural number: Implications for aging. J Neurosci 5: 1221–1224CrossRefGoogle Scholar
Sapolsky, R. M., Armanini, M. P., Packan, D. R., Sutton, W. S., Plotsky, P. M. (1990). Glucocorticoid feedback inhibition of adrenocorticotropic hormone secretagogue release. Neuroendocrinology 51: 328–336CrossRefGoogle ScholarPubMed
Saunders, R. C., Kolachana, B. S., Bachevalier, J., Weinberger, D. R. (1998). Neonatal lesions of the medial temporal lobe disrupt prefrontal cortical regulation of striatal dopamine. Nature 393: 169–171CrossRefGoogle ScholarPubMed
Seeman, P. (1987). Dopamine receptors and the dopamine hypothesis of schizophrenia. Synapse 1: 133–152CrossRefGoogle ScholarPubMed
Schultz, W. (1998). Predictive reward signal of dopamine neurons. J Neurophysiol 80: 1–27CrossRefGoogle ScholarPubMed
Selemon, L. D., Rajkowska, G., Goldman-Rakic, P. S. (1995). Abnormally high neuronal density in the schizophrenic cortex. A morphometric analysis of prefrontal area 9 and occipital area 17. Arch Gen Psychiatry 52: 805–818CrossRefGoogle ScholarPubMed
Serova, L. I., Nankova, B. B., Feng, Z.et al. (1999). Heightened transcription for enzymes involved in norepinephrine biosynthesis in the rat locus coeruleus by immobilization stress. Biol Psychiatry 45: 853–862CrossRefGoogle ScholarPubMed
Shanks, N., Zalcman, S., Zacharko, R. M., Anisman, H. (1991). Alterations of central norepinephrine, dopamine and serotonin in several strains of mice following acute stressor exposure. Pharmacol Biochem Behav 38: 69–75CrossRefGoogle ScholarPubMed
Sherman, J. E., Kalin, N. H. (1986). ICV–CRH potently affects behavior without altering antinociceptive responding. Life Sci 39: 433–441CrossRefGoogle ScholarPubMed
Smagin, G. N., Swiergiel, A. H., Dunn, A. J. (1995). Corticotropin-releasing factor administered into the locus coeruleus, but not the parabrachial nucleus, stimulates norepinephrine release in the prefrontal cortex. Brain Res Bull 36: 71–76CrossRefGoogle Scholar
Smagin, G. N., Harris, R. B., Ryan, D. H. (1996). Corticotropin-releasing factor receptor antagonist infused into the locus coeruleus attenuates immobilization stress-induced defensive withdrawal in rats. Neurosci Lett 220: 167–170CrossRefGoogle ScholarPubMed
Smagin, G. N., Zhou, J., Harris, R. B., Ryan, D. H. (1997). CRF receptor antagonist attenuates immobilization stress-induced norepinephrine release in the prefrontal cortex in rats. Brain Res Bull 42: 431–434CrossRefGoogle ScholarPubMed
Suddath, R. L., Christison, G. W., Torrey, E. F., Casanova, M. F., Weinberger, D. R. (1990). Anatomical abnormalities in the brains of monozygotic twins discordant for schizophrenia. N Engl J Med 322: 789–794CrossRefGoogle Scholar
Susser, E., Neugebauer, R., Hoek, H. W.et al. (1996). Schizophrenia after prenatal famine. Arch Gen Psychiatry 53: 25–31CrossRefGoogle ScholarPubMed
Tamminga, C. A., Thaker, G. K., Buchanan, R.et al. (1992). Limbic system abnormalities identified in schizophrenia using positron emission tomography with fluorodeoxyglucose and neocortical alterations with deficit syndrome. Arch Gen Psychiatry 49: 522–530CrossRefGoogle ScholarPubMed
Tebartz van Elst, L., Woermann, F. G., Lemieux, L., Trimble, M. R. (1999). Amygdala enlargement in dysthymia: a volumetric study of patients with temporal lobe epilepsy. Biol Psychiatry 46: 1614–1623CrossRefGoogle ScholarPubMed
Thierry, A. M., Javoy, F., Glowinski, J., Kety, S. S. (1968). Effects of stress on the metabolism of norepinephrine, dopamine and serotonin in the central nervous system of the rat. I. Modifications of norepinephrine turnover. J Pharmacol Exp Ther 163: 163–171Google Scholar
Thune, J. J., Pakkenberg, B. (2000). Stereological studies of the schizophrenic brain. Brain Res Rev 31: 200–204CrossRefGoogle ScholarPubMed
Torrey, E. F., Miller, J., Rawlings, R., Yolken, R. H. (1997). Seasonality of births in schizophrenia and bipolar disorder: a review of the literature. Schizophr Res 28: 1–38CrossRefGoogle ScholarPubMed
Vale, W., Spiess, J., Rivier, C., Rivier, J. (1981). Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin. Science 213: 1394–1397CrossRefGoogle ScholarPubMed
Valentino, R. J., Foote, S. L. (1986). Brain noradrenergic neurons, corticotropin-releasing factor, and stress. In: Neural and Endocrine Peptides and Receptors, ed. T. W. Moody. New York: Plenum Press, pp. 101–120CrossRef
Valentino, R. J., Wehby, R. G. (1988). Corticotropin-releasing factor: evidence for a neurotransmitter role in the locus ceruleus during hemodynamic stress. Neuroendocrinology 48: 674–677CrossRefGoogle ScholarPubMed
Valentino, R. J., Foote, S. L., Aston-Jones, G (1983). Corticotropin-releasing factor activates noradrenergic neurons of the locus coeruleus. Brain Res 270: 363–367CrossRefGoogle ScholarPubMed
Valentino, R. J., Page, M. E., Curtis, A. L. (1991). Activation of noradrenergic locus coeruleus neurons by hemodynamic stress is due to local release of corticotropin-releasing factor. Brain Res 555: 25–34CrossRefGoogle ScholarPubMed
Valentino, R. J., Foote, S. L., Page, M. E. (1993). The locus coeruleus as a site for integrating corticotropin-releasing factor and noradrenergic mediation of stress responses. Ann NY Acad Sci 697: 173–188CrossRefGoogle ScholarPubMed
Valentino, R. J., Chen, S., Zhu, Y., Aston-Jones, G. (1996). Evidence for divergent projections to the brain noradrenergic system and the spinal parasympathetic system from Barrington's nucleus. Brain Res 732: 1–15CrossRefGoogle ScholarPubMed
Bockstaele, E. J., Colago, E. E., Valentino, R. J. (1996). Corticotropin-releasing factor-containing axon terminals synapse onto catecholamine dendrites and may presynaptically modulate other afferents in the rostral pole of the nucleus locus coeruleus in the rat brain. J Comp Neurol 364: 523–5343.0.CO;2-Q>CrossRefGoogle ScholarPubMed
Bockstaele, E. J., Colago, E. E., Valentino, R. J. (1998). Amygdaloid corticotropin-releasing factor targets locus coeruleus dendrites: substrate for the co-ordination of emotional and cognitive limbs of the stress response. J Neuroendocrinol 10: 743–757CrossRefGoogle ScholarPubMed
Bockstaele, E. J., Peoples, J., Valentino, R. J. (1999). A. E. Bennett Research Award. Anatomic basis for differential regulation of the rostrolateral peri-locus coeruleus region by limbic afferents. Biol Psychiatry 46: 1352–1363CrossRefGoogle Scholar
Kammen, D. P., Bok van Kammen, W., Mann, L. S., Seppala, T., Linnoila, M. (1986). Dopamine metabolism in the cerebrospinal fluid of drug-free schizophrenic patients with and without cortical atrophy. Arch Gen Psychiatry 43: 978–983CrossRefGoogle ScholarPubMed
Waddington, J. L. (1990). Spontaneous orofacial movements induced in rodents by very long-term neuroleptic drug administration: phenomenology, pathophysiology and putative relationship to tardive dyskinesia. [See comments]Psychopharmacology 101: 431–447CrossRefGoogle Scholar
Walker, E. F., Diforio, D. (1997). Schizophrenia: a neural diathesis-stress model. Psychol Rev 104: 667–685CrossRef
Weinberger, D. R. (1996). On the plausibility of “the neurodevelopmental hypothesis” of schizophrenia. Neuropsychopharmacology 14(Suppl. 3): 1S–11SCrossRefGoogle ScholarPubMed
Weinberger, D. R. (1999). Cell biology of the hippocampal formation in schizophrenia. Biol Psychiatry 45: 395–402CrossRefGoogle Scholar
Weinberger, D. R., Lipska, B. K. (1995). Cortical maldevelopment, anti-psychotic drugs, and schizophrenia: a search for common ground. Schizophr Res 16: 87–110CrossRefGoogle ScholarPubMed
Weinberger, D. R., Berman, K. F., Ostrem, J. L., Abi-Dargham, A., Torrey, E. F. (1993). Disorganization of prefrontal-hippocampal connectivity in schizophrenia: a PET study of discordant MZ twins. Soc Neurosci Abstr 19: 7Google Scholar
Wightman, R. M., Robinson, D. L. (2002). Transient changes in mesolimbic dopamine and their association with ‘reward.’J Neurochem 82: 721–735CrossRefGoogle Scholar
Yang, C. R., Mogenson, G. J. (1985). An electrophysiological study of the neural projection from the hippocampus to the ventral pallidum and subpallidal areas by way of the nucleus accumbens. Neuroscience 15: 1015–1024CrossRefGoogle ScholarPubMed
Zhu, Y., Aston-Jones, G. (1996). The medial prefrontal cortex prominently innervates a peri-locus coeruleus zone in rat. Soc Neurosci Abstr 22: 601Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×