Book contents
- Frontmatter
- Contents
- List of contributors
- Preface
- Part I Basic aspects of neurodegeneration
- 1 Endogenous free radicals and antioxidants in the brain
- 2 Biological oxidants and therapeutic antioxidants
- 3 Mitochondria, metabolic inhibitors and neurodegeneration
- 4 Excitoxicity and excitatory amino acid antagonists in chronic neurodegenerative diseases
- 5 Glutamate transporters
- 6 Calcium binding proteins in selective vulnerability of motor neurons
- 7 Apoptosis in neurodegenerative diseases
- 8 Neurotrophic factors
- 9 Protein misfolding and cellular defense mechanisms in neurodegenerative diseases
- 10 Neurodegenerative disease and the repair of oxidatively damaged DNA
- 11 Compounds acting on ion channels
- 12 The role of nitric oxide and PARP in neuronal cell death
- 13 Copper and zinc in Alzheimer's disease and amyotrophic lateral sclerosis
- 14 The role of inflammation in Alzheimer's disease neuropathology and clinical dementia. From epidemiology to treatment
- 15 Selected genetically engineered models relevant to human neurodegenerative disease
- 16 Toxic animal models
- 17 A genetic outline of the pathways to cell death in Alzheimer's disease, Parkinson's disease, frontal dementias and related disorders
- 18 Neurophysiology of Parkinson's disease, levodopa-induced dyskinesias, dystonia, Huntington's disease and myoclonus
- Part II Neuroimaging in neurodegeneration
- Part III Therapeutic approaches in neurodegeneration
- Normal aging
- Part IV Alzheimer's disease
- Part VI Other Dementias
- Part VII Parkinson's and related movement disorders
- Part VIII Cerebellar degenerations
- Part IX Motor neuron diseases
- Part X Other neurodegenerative diseases
- Index
- References
15 - Selected genetically engineered models relevant to human neurodegenerative disease
from Part I - Basic aspects of neurodegeneration
Published online by Cambridge University Press: 04 August 2010
- Frontmatter
- Contents
- List of contributors
- Preface
- Part I Basic aspects of neurodegeneration
- 1 Endogenous free radicals and antioxidants in the brain
- 2 Biological oxidants and therapeutic antioxidants
- 3 Mitochondria, metabolic inhibitors and neurodegeneration
- 4 Excitoxicity and excitatory amino acid antagonists in chronic neurodegenerative diseases
- 5 Glutamate transporters
- 6 Calcium binding proteins in selective vulnerability of motor neurons
- 7 Apoptosis in neurodegenerative diseases
- 8 Neurotrophic factors
- 9 Protein misfolding and cellular defense mechanisms in neurodegenerative diseases
- 10 Neurodegenerative disease and the repair of oxidatively damaged DNA
- 11 Compounds acting on ion channels
- 12 The role of nitric oxide and PARP in neuronal cell death
- 13 Copper and zinc in Alzheimer's disease and amyotrophic lateral sclerosis
- 14 The role of inflammation in Alzheimer's disease neuropathology and clinical dementia. From epidemiology to treatment
- 15 Selected genetically engineered models relevant to human neurodegenerative disease
- 16 Toxic animal models
- 17 A genetic outline of the pathways to cell death in Alzheimer's disease, Parkinson's disease, frontal dementias and related disorders
- 18 Neurophysiology of Parkinson's disease, levodopa-induced dyskinesias, dystonia, Huntington's disease and myoclonus
- Part II Neuroimaging in neurodegeneration
- Part III Therapeutic approaches in neurodegeneration
- Normal aging
- Part IV Alzheimer's disease
- Part VI Other Dementias
- Part VII Parkinson's and related movement disorders
- Part VIII Cerebellar degenerations
- Part IX Motor neuron diseases
- Part X Other neurodegenerative diseases
- Index
- References
Summary
Introduction
This review on selected neurodegenerative diseases, including Alzheimer's disease, amyotrophic lateral sclerosis (ALS), and Parkinson's disease, and frontotemporal dementia with Parkinsonism (FTD-P), focuses on the ways by which genetically engineered models have clarified the mechanisms of these disorders and have identified new targets for therapy, and been used to test new treatment strategies. These neurodegenerative diseases are some of the most challenging diseases in medicine because of their general prevalence, cost, lack of mechanism-based treatments, and impact on individuals and caregivers (Lipp & Wolfer, 1998; Wong et al., 2002). The classical clinical phenotypes are, for the most part, quite distinct and reflect the dysfunction and death of specific populations of neurons. These brain lesions are characterized by the presence of intracellular or extracellular peptides/aggregates, which appear to be critical contributors to neurotoxicity, partially damaging to synapses. Genetic risk factors influence these age-associated, chronic illnesses. In rare instances, cases are inherited in Mendelian fashion (usually as autosomal dominants). Susceptibility genes, environmental risk factors, or other influences remain to be defined. Information from genetics has allowed investigators to express or to target genes in efforts to model these diseases and to study the (Armstrong et al., 1996) molecular participants critical in pathogenic pathways. This body of research is the principal topic of this review.
In this review, we emphasize the value of genetically engineered mouse models for studies of mechanisms and for experimental therapeutics, but we also briefly describe the extraordinary utility of non-mammalian genetic models.
- Type
- Chapter
- Information
- Neurodegenerative DiseasesNeurobiology, Pathogenesis and Therapeutics, pp. 176 - 195Publisher: Cambridge University PressPrint publication year: 2005
References
- 1
- Cited by