Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-09T05:43:56.193Z Has data issue: false hasContentIssue false

22 - Gene therapy

from Part III - Therapeutic approaches in neurodegeneration

Published online by Cambridge University Press:  04 August 2010

M. Flint Beal
Affiliation:
Cornell University, New York
Anthony E. Lang
Affiliation:
University of Toronto
Albert C. Ludolph
Affiliation:
Universität Ulm, Germany
Chamsy Sarkis
Affiliation:
Laboratoire de Génétique Moléculaire de la Neurotransmission et des Processus, Neurodégénératifs (LGN) Centre National de la Recherche Scientifique UMR 7091, Hôpital Pitié-Salpétrière (Bâtiment CERVI), Paris, France
Jacques Mallet
Affiliation:
Laboratoire de Génétique Moléculaire de la Neurotransmission et des Processus, Neurodégénératifs (LGN) Centre National de la Recherche Scientifique UMR 7091, Hôpital Pitié-Salpétrière (Bâtiment CERVI), Paris, France
Get access

Summary

In the past 20 years, the development of molecular biology and genetic engineering has led to new horizons in therapy. Introducing therapeutic nucleic sequences into the organism for curing a disease is a very attractive approach for treating both inherited and acquired diseases for which classical drug therapy is not satisfactory. Although the idea is simple, many hurdles have to be overcome before clinical applications can be envisaged. The transfer vector and the therapeutic gene are the major determinants for successful therapy. An ideal vector would be easy to produce, and safe for the patient and the environment. Ideally, it must transduce only the target cells and do so efficiently. It should be possible to readminister the vector to the patients without triggering a deleterious immune reaction from the host, and the transgene has to be expressed at an appropriate level for the desired duration. The optimal characteristics of the gene depend on the disease. For a recessive monogenic disease, a wild-type allele of the mutated gene is generally required. For a dominant monogenic disease, sequences that inhibit the expression of the mutated allele, or that counter its physiological effect may be used. For many complex diseases, whether inherited or acquired, there are several potentially therapeutic genes. A therapeutic gene must be effective, but have minimal side effects. In particular, it should not lead to an immune response from the host organism, and this can be a major problem for recessive monogenic diseases, where the patient had never been in contact with the wild-type gene product.

Type
Chapter
Information
Neurodegenerative Diseases
Neurobiology, Pathogenesis and Therapeutics
, pp. 329 - 346
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akkina, R. K., Walton, R. M., Chen, M. L., Li, Q. X., Planelles, V. & Chen, I. S. (1996). High-efficiency gene transfer into CD34+ cells with a human immunodeficiency virus type 1-based retroviral vector pseudotyped with vesicular stomatitis virus envelope glycoprotein G. J. Virol., 70, 2581–5Google ScholarPubMed
Akli, S., Caillaud, C., Vigne, E.et al. (1993). Transfer of a foreign gene into the brain using adenovirus vectors. Nat. Genet., 3, 224–8CrossRefGoogle ScholarPubMed
Alexander, I. E., Russell, D. W. & Miller, A. D. (1994). DNA-damaging agents greatly increase the transduction of nondividing cells by adeno-associated virus vectors. J. Virol., 68, 8282–7Google ScholarPubMed
Anderson, D. B., Laquerre, S., Ghosh, K.et al. (2000). Pseudotyping of glycoprotein D-deficient herpes simplex virus type 1 with vesicular stomatitis virus glycoprotein G enables mutant virus attachment and entry. J. Virol., 74, 2481–7CrossRefGoogle Scholar
Atchison, R. W., Casto, B. C. & Hammon, W. (1965). Adenovirus-associated defective virus particles. Science, 149, 754CrossRefGoogle ScholarPubMed
Auricchio, A., Hildinger, M., O'Connor, E., Gao, G. P. & Wilson, J. M. (2001). Isolation of highly infectious and pure adeno-associated virus type 2 vectors with a single-step gravity-flow column. Hum. Gene Ther., 12, 71–6CrossRefGoogle ScholarPubMed
Auricchio, A., Kobinger, G., Anand, V.et al. (2001). Exchange of surface proteins impacts on viral vector cellular specificity and transduction characteristics: the retina as a model. Hum. Mol. Genet., 10, 3075–81CrossRefGoogle Scholar
Bajocchi, G., Feldman, S. H., Crystal, R. G. & Mastrangeli, A. (1993). Direct in vivo gene transfer to ependymal cells in the central nervous system using recombinant adenovirus vectors. Nat. Genet., 3, 229–34CrossRefGoogle ScholarPubMed
Bankiewicz, K. S., Eberling, J. L., Kohutnicka, M.et al. (2000). Convection-enhanced delivery of AAV vector in parkinsonian monkeys; in vivo detection of gene expression and restoration of dopaminergic function using pro-drug approach. Exp. Neurol., 164, 2–14CrossRefGoogle ScholarPubMed
Bartlett, J. S., Kleinschmidt, J., Boucher, R. C. & Samulski, R. J. (1999). Targeted adeno-associated virus vector transduction of nonpermissive cells mediated by a bispecific F(ab'gamma)2 antibody. Nat. Biotechnol., 17, 181–6CrossRefGoogle ScholarPubMed
Benabid, A. L., Benazzouz, A., Hoffmann, D., Limousin, P., Krack, P. & Pollak, P. (1998). Long-term electrical inhibition of deep brain targets in movement disorders. Mov. Disord., 13 Suppl 3, 119–25CrossRefGoogle ScholarPubMed
Bergelson, J. M., Cunningham, J. A., Droguett, G.et al. (1997). Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science, 275, 1320–3CrossRefGoogle ScholarPubMed
Berkowitz, R., Ilves, H., Lin, W. Y.et al. (2001a). Construction and molecular analysis of gene transfer systems derived from bovine immunodeficiency virus. J. Virol., 75, 3371–82CrossRefGoogle Scholar
Berkowitz, R. D., Ilves, H., Plavec, I. & Veres, G. (2001b). Gene transfer systems derived from Visna virus: analysis of virus production and infectivity. Virology, 279, 116–29CrossRefGoogle Scholar
Bilang-Bleuel, A., Revah, F., Colin, P.et al. (1997). Intrastriatal injection of an adenoviral vector expressing glial-cell-line-derived neurotrophic factor prevents dopaminergic neuron degeneration and behavioral impairment in a rat model of Parkinson disease. Proc. Natl, Acad. Sci., USA, 94, 8818–23CrossRefGoogle Scholar
Birkenmeier, E. H., Davisson, M. T., Beamer, W. G.et al. (1989). Murine mucopolysaccharidosis type VII. Characterization of a mouse with beta-glucuronidase deficiency. J. Clin. Invest., 83, 1258–6CrossRefGoogle ScholarPubMed
Blomer, U., Naldini, L., Kafri, T., Trono, D., Verma, I. M. & Gage, F. H. (1997). Highly efficient and sustained gene transfer in adult neurons with a lentivirus vector. J. Virol., 71, 6641–9Google ScholarPubMed
Bosch, A., Perret, E., Desmaris, N. & Heard, J. M. (2000a). Long-term and significant correction of brain lesions in adult mucopolysaccharidosis type VII mice using recombinant AAV vectors. Mol. Ther.: J. Am. Soc. Gene Ther., 1, 63–70CrossRefGoogle Scholar
Bosch, A., Perret, E., Desmaris, N., Trono, D. & Heard, J. M. (2000b). Reversal of pathology in the entire brain of mucopolysaccharidosis type VII mice after lentivirus-mediated gene transfer. Hum. Gene Ther., 11, 1139–50CrossRefGoogle Scholar
Bosselman, R. A., Hsu, R. Y., Bruszewski, J., Hu, S., Martin, F. & Nicolson, M. (1987). Replication-defective chimeric helper proviruses and factors affecting generation of competent virus: expression of Moloney murine leukemia virus structural genes via the metallothionein promoter. Mol. Cell Biol., 7, 1797–806CrossRefGoogle ScholarPubMed
Brockman, M. A. & Knipe, D. M. (2002). Herpes simplex virus vectors elicit durable immune responses in the presence of preexisting host immunity. J. Virol., 76, 3678–87CrossRefGoogle ScholarPubMed
Brooks, A. I., Stein, C. S., Hughes, S. M.et al. (2002). Functional correction of established central nervous system deficits in an animal model of lysosomal storage disease with feline immunodeficiency virus-based vectors. Proc. Natl Acad. Sci., USA, 99, 6216–21CrossRefGoogle Scholar
Browning, M. T., Schmidt, R. D., Lew, K. A. & Rizvi, T. A. (2001). Primate and feline lentivirus vector RNA packaging and propagation by heterologous lentivirus virions. J. Virol., 75, 5129–40CrossRefGoogle ScholarPubMed
Brun, S., Faucon-Biguet, N. & Mallet, J. (2003). Optimization of transgene expression at the posttranscriptional level in neural cells: implications for gene therapy. Mol. Ther., 7, 782–9CrossRefGoogle ScholarPubMed
Buller, R. M., Janik, J. E., Sebring, E. D. & Rose, J. A. (1981). Herpes simplex virus types 1 and 2 completely help adenovirus-associated virus replication. J. Virol., 40, 241–7Google ScholarPubMed
Burton, M., Nakai, H., Colosi, P., Cunningham, J., Mitchell, R. & Couto, L. (1999). Coexpression of factor VIII heavy and light chain adeno-associated viral vectors produces biologically active protein. Proc. Natl Acad. Sci., USA, 96, 12725–30CrossRefGoogle ScholarPubMed
Casal, M. L. & Wolfe, J. H. (2000). Mucopolysaccharidosis type VII in the developing mouse fetus. Pediatr Res., 47, 750–6CrossRefGoogle ScholarPubMed
Cavazzana-Calvo, M., Hacein-Bey, S., Saint Basile, G.et al. (2000). Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science, 288, 669–72CrossRefGoogle ScholarPubMed
Chamberlin, N. L., Du, B., Lacalle, S. & Saper, C. B. (1998). Recombinant adeno-associated virus vector: use for transgene expression and anterograde tract tracing in the CNS. Brain Res., 793, 169–75CrossRefGoogle ScholarPubMed
Chartier, C., Degryse, E., Gantzer, M., Dieterle, A., Pavirani, A. & Mehtali, M. (1996). Efficient generation of recombinant adenovirus vectors by homologous recombination in Escherichia coli. J. Virol., 70, 4805–10Google ScholarPubMed
Chillon, M., Bosch, A., Zabner, J.et al. (1999). Group D adenoviruses infect primary central nervous system cells more efficiently than those from group C. J. Virol., 73, 2537–40Google ScholarPubMed
Chirmule, N., Propert, K., Magosin, S., Qian, Y., Qian, R. & Wilson, J. (1999). Immune responses to adenovirus and adeno-associated virus in humans. Gene Ther., 6, 1574–83CrossRefGoogle ScholarPubMed
Christenson, S. D., Lake, K. D., Ooboshi, H.et al. (1998). Adenovirus-mediated gene transfer in vivo to cerebral blood vessels and perivascular tissue in mice. Stroke, 29, 1411–15; discussion 1416CrossRefGoogle ScholarPubMed
Collaco, R. F., Cao, X. & Trempe, J. P. (1999). A helper virus-free packaging system for recombinant adeno-associated virus vectors. Gene, 238, 397–405CrossRefGoogle ScholarPubMed
Corti, O., Sanchez-Capelo, A., Colin, P., Hanoun, N., Hamon, M. & Mallet, J. (1999). Long-term doxycycline-controlled expression of human tyrosine hydroxylase after direct adenovirus-mediated gene transfer to a rat model of Parkinson's disease. Proc. Natl Acad. Sci., USA, 96, 12120–5CrossRefGoogle ScholarPubMed
Cosset, F. L., Takeuchi, Y., Battini, J. L., Weiss, R. A. & Collins, M. K. (1995). High-titers packaging cells producing recombinant retroviruses resistant to human serum. J. Virol., 69, 7430–6Google Scholar
Costantini, L. C., Bakowska, J. C., Breakefield, X. O. & Isacson, O. (2000). Gene therapy in the CNS. Gene Ther., 7, 93–109CrossRefGoogle ScholarPubMed
Crouzet, J., Naudin, L., Orsini, C.et al. (1997). Recombinational construction in Escherichia coli of infectious adenoviral genomes. Proc. Natl Acad. Sci., USA, 94, 1414–19CrossRefGoogle ScholarPubMed
Croyle, M. A., Cheng, X. & Wilson, J. M. (2001). Development of formulations that enhance physical stability of viral vectors for gene therapy. Gene Ther., 8, 1281–90CrossRefGoogle ScholarPubMed
Croyle, M. A., Chirmule, N., Zhang, Y. & Wilson, J. M. (2002). PEGylation of E1-deleted adenovirus vectors allows significant gene expression on readministration to liver. Hum. Gene Ther., 13, 1887–900CrossRefGoogle ScholarPubMed
Daly, T. M., Okuyama, T., Vogler, C., Haskins, M. E., Muzyczka, N. & Sands, M. S. (1999). Neonatal intramuscular injection with recombinant adeno-associated virus results in prolonged beta-glucuronidase expression in situ and correction of liver pathology in mucopolysaccharidosis type VII mice. Hum. Gene Ther., 10, 85–94CrossRefGoogle ScholarPubMed
Daly, T. M., Ohlemiller, K. K., Roberts, M. S., Vogler, C. A. & Sands, M. S. (2001). Prevention of systemic clinical disease in MPS VII mice following AAV-mediated neonatal gene transfer. Gene Ther., 8, 1291–8CrossRefGoogle ScholarPubMed
Danos, O. & Mulligan, R. C. (1988). Safe and efficient generation of recombinant retroviruses with amphotropic and ecotropic host ranges. Proc. Natl Acad. Sci., USA, 85, 6460–4CrossRefGoogle ScholarPubMed
Davidson, B. L., Allen, E. D., Kozarsky, K. F., Wilson, J. M. & Roessler, B. J. (1993). A model system for in vivo gene transfer into the central nervous system using an adenoviral vector. Nat. Genet., 3, 219–23CrossRefGoogle ScholarPubMed
Davidson, B. L., Stein, C. S., Heth, J. A.et al. (2000). Recombinant adeno-associated virus type 2, 4 & 5 vectors: transduction of variant cell types and regions in the mammalian central nervous system. Proc. Natl Acad. Sci., USA, 97, 3428–32CrossRefGoogle ScholarPubMed
Delman, K. A., Bennett, J. J., Zager, J. S.et al. (2000). Effects of preexisting immunity on the response to herpes simplex-based oncolytic viral therapy. Hum. Gene Ther., 11, 2465–72CrossRefGoogle ScholarPubMed
Desmaris, N., Bosch, A., Salaun, C.et al. (2001). Production and neurotropism of lentivirus vectors pseudotyped with lyssavirus envelope glycoproteins. Mol. Ther., 4, 149–56CrossRefGoogle ScholarPubMed
Drittanti, L., Jenny, C., Poulard, K.et al. (2001). Optimised helper virus-free production of high-quality adeno-associated virus vectors. J. Gene Med., 3, 59–713.0.CO;2-U>CrossRefGoogle ScholarPubMed
Duan, D., Yan, Z., Yue, Y. & Engelhardt, J. F. (1999). Structural analysis of adeno-associated virus transduction circular intermediates. Virology, 261, 8–14CrossRefGoogle ScholarPubMed
Duan, D., Yue, Y. & Engelhardt, J. F. (2001). Expanding AAV packaging capacity with trans-splicing or overlapping vectors: a quantitative comparison. Mol. Ther.: J. Am. Soc. Gene Ther., 4, 383–91CrossRefGoogle ScholarPubMed
Dull, T., Zufferey, R., Kelly, M.et al. (1998). A third-generation lentivirus vector with a conditional packaging system. J. Virol., 72, 8463–71Google ScholarPubMed
Elliger, S., Elliger, C., Aguilar, C., Raju, N. & Watson, G. (1999). Elimination of lysosomal storage in brains of MPS VII mice treated by intrathecal administration of an adeno-associated virus vector. Gene Ther., 6, 1175–8CrossRefGoogle ScholarPubMed
Fallaux, F. J., Kranenburg, O., Cramer, S. J.et al. (1996). Characterization of 911: a new helper cell line for the titration and propagation of early region 1-deleted adenoviral vectors. Hum. Gene Ther., 7, 215–22CrossRefGoogle ScholarPubMed
Fallaux, F. J., Bout, A., Velde, I.et al. (1998). New helper cells and matched early region 1-deleted adenovirus vectors prevent generation of replication-competent adenoviruses. Hum. Gene Ther., 9, 1909–17CrossRefGoogle ScholarPubMed
Fang, B., Wang, H., Gordon, G.et al. (1996). Lack of persistence of E1- recombinant adenoviral vectors containing a temperature-sensitive E2A mutation in immunocompetent mice and hemophilia B dogs. Gene Ther., 3, 217–22Google ScholarPubMed
Finiels, F., Gimenez y Ribotta, M., Barkats, M.et al. (1995). Specific and efficient gene transfer strategy offers new potentialities for the treatment of motor neurone diseases. Neuroreport, 7, 373–8CrossRefGoogle ScholarPubMed
Fisher, K. D., Stallwood, Y., Green, N. K., Ulbrich, K., Mautner, V. & Seymour, L. W. (2001). Polymer-coated adenovirus permits efficient retargeting and evades neutralising antibodies. Gene Ther., 8, 341–8CrossRefGoogle ScholarPubMed
Fisher, K. J., Choi, H., Burda, J., Chen, S. J. & Wilson, J. M. (1996). Recombinant adenovirus deleted of all viral genes for gene therapy of cystic fibrosis. Virology, 217, 11–22CrossRefGoogle ScholarPubMed
Follenzi, A., Ailles, L. E., Bakovic, S., Geuna, M. & Naldini, L. (2000). Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV-1 pol sequences. Nat. Genet., 25, 217–22Google ScholarPubMed
Fraefel, C., Song, S., Lim, F.et al. (1996). Helper virus-free transfer of herpes simplex virus type 1 plasmid vectors into neural cells. J. Virol., 70, 7190–7Google ScholarPubMed
Fu, X. & Zhang, X. (2001). Delivery of herpes simplex virus vectors through liposome formulation. Mol. Ther. J. Am. Soc. Gene Ther., 4, 447–53CrossRefGoogle ScholarPubMed
Gallot, D., Seifer, I., Lemery, D. & Bignon, Y. J. (2002). Systemic diffusion including germ cells after plasmidic in utero gene transfer in the rat. Fetal Diag. Ther., 17, 157–62CrossRefGoogle ScholarPubMed
Gao, G. P., Alvira, M. R., Wang, L., Calcedo, R., Johnston, J. & Wilson, J. M. (2002). Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc. Natl Acad. Sci., USA, 99, 11854–9CrossRefGoogle ScholarPubMed
Geller, A. I. & Breakefield, X. O. (1988). A defective HSV-1 vector expresses Escherichia coli beta-galactosidase in cultured peripheral neurons. Science, 241, 1667–9CrossRefGoogle ScholarPubMed
Ghadge, G. D., Roos, R. P., Kang, U. J.et al. (1995). CNS gene delivery by retrograde transport of recombinant replication-defective adenoviruses. Gene Ther., 2, 132–7Google ScholarPubMed
Ghodsi, A., Stein, C., Derksen, T., Yang, G., Anderson, R. D. & Davidson, B. L. (1998). Extensive beta-glucuronidase activity in murine central nervous system after adenovirus-mediated gene transfer to brain. Hum. Gene Ther., 9, 2331–40CrossRefGoogle Scholar
Ghodsi, A., Stein, C., Derksen, T., Martins, I., Anderson, R. D. & Davidson, B. L. (1999). Systemic hyperosmolality improves beta-glucuronidase distribution and pathology in murine MPS VII brain following intraventricular gene transfer. Exp. Neurol., 160, 109–16CrossRefGoogle ScholarPubMed
Girod, A., Ried, M., Wobus, C.et al. (1999). Genetic capsid modifications allow efficient re-targeting of adeno-associated virus type 2. Nat. Med., 5, 1052–6CrossRefGoogle ScholarPubMed
Goins, W. F., Sternberg, L. R., Croen, K. D.et al. (1994). A novel latency-active promoter is contained within the herpes simplex virus type 1 UL flanking repeats. J. Virol., 68, 2239–52Google ScholarPubMed
Goins, W. F., Lee, K. A., Cavalcoli, J. D.et al. (1999). Herpes simplex virus type 1 vector-mediated expression of nerve growth factor protects dorsal root ganglion neurons from peroxide toxicity. J. Virol., 73, 519–32Google ScholarPubMed
Goldman, C. K., Rogers, B. E., Douglas, J. T.et al. (1997). Targeted gene delivery to Kaposi's sarcoma cells via the fibroblast growth factor receptor. Cancer Res., 57, 1447–51Google ScholarPubMed
Graham, F. L., Smiley, J., Russell, W. C. & Nairn, R. (1977). Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J. Gen. Virol., 36, 59–74CrossRefGoogle ScholarPubMed
Grifman, M., Trepel, M., Speece, P.et al. (2001). Incorporation of tumor-targeting peptides into recombinant adeno-associated virus capsids. Mol. Ther., 3, 964–75CrossRefGoogle ScholarPubMed
Hacein-Bey-Abina, S., Kalle, C., Schmidt, M.et al. (2003). A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N. Engl. J. Med., 348, 255–6CrossRefGoogle ScholarPubMed
Halbert, C. L., Rutledge, E. A., Allen, J. M., Russell, D. W. & Miller, A. D. (2000). Repeat transduction in the mouse lung by using adeno-associated virus vectors with different serotypes. J. Virol., 74, 1524–32CrossRefGoogle Scholar
Hardy, S., Kitamura, M., Harris-Stansil, T., Dai, Y. & Phipps, M. L. (1997). Construction of adenovirus vectors through Cre-lox recombination. J. Virol., 71, 1842–9Google ScholarPubMed
Hashimoto, M., Aruga, J., Hosoya, Y., Kanegae, Y., Saito, I. & Mikoshiba, K. (1996). A neural cell-type-specific expression system using recombinant adenovirus vectors. Hum. Gene Ther., 7, 149–58CrossRefGoogle ScholarPubMed
Haskins, M. E., Desnick, R. J., DiFerrante, N., Jezyk, P. F. & Patterson, D. F. (1984). Beta-glucuronidase deficiency in a dog: a model of human mucopolysaccharidosis VII. Pediatr. Res., 18, 980–4Google Scholar
Hillgenberg, M., Schnieders, F., Loser, P. & Strauss, M. (2001). System for efficient helper-dependent minimal adenovirus construction and rescue. Hum. Gene Ther., 12, 643–57CrossRefGoogle Scholar
Holmes-Son, M. L. & Chow, S. A. (2000). Integrase-lexA fusion proteins incorporated into human immunodeficiency virus type 1 that contains a catalytically inactive integrase gene are functional to mediate integration. J. Virol., 74, 11548–56CrossRefGoogle Scholar
Holmes-Son, M. L. & Chow, S. A. (2002). Correct integration mediated by integrase-LexA fusion proteins incorporated into HIV-1. Mol. Ther., 5, 360–70CrossRefGoogle ScholarPubMed
Holmes-Son, M. L., Appa, R. S. & Chow, S. A. (2001). Molecular genetics and target site specificity of retroviral integration. Adv. Genet., 43, 33–69Google ScholarPubMed
Horellou, P., Vigne, E., Castel, M. N.et al. (1994). Direct intracerebral gene transfer of an adenoviral vector expressing tyrosine hydroxylase in a rat model of Parkinson's disease. Neuroreport, 6, 49–53CrossRefGoogle Scholar
Hsich, G., Sena-Esteves, M. & Breakefield, X. O. (2002). Critical issues in gene therapy for neurologic disease. Hum. Gene Ther., 13, 579–604CrossRefGoogle ScholarPubMed
Iwakuma, T., Cui, Y. & Chang, L. J. (1999). Self-inactivating lentiviral vectors with U3 and U5 modifications. Virology, 261, 120–32CrossRefGoogle ScholarPubMed
Kafri, T., Blomer, U., Peterson, D. A., Gage, F. H. & Verma, I. M. (1997). Sustained expression of genes delivered directly into liver and muscle by lentiviral vectors. Nat. Genet., 17, 314–17CrossRefGoogle ScholarPubMed
Kafri, T., Praag, H., Ouyang, L., Gage, F. H. & Verma, I. M. (1999). A packaging cell line for lentivirus vectors. J. Virol., 73, 576–84Google ScholarPubMed
Kaul, M., Yu, H., Ron, Y. & Dougherty, J. P. (1998). Regulated lentiviral packaging cell line devoid of most viral cis-acting sequences. Virology, 249, 167–74CrossRefGoogle ScholarPubMed
Ketner, G., Spencer, F., Tugendreich, S., Connelly, C. & Hieter, P. (1994). Efficient manipulation of the human adenovirus genome as an infectious yeast artificial chromosome clone. Proc. Natl Acad. Sci., USA, 91, 6186–90CrossRefGoogle ScholarPubMed
Kochanek, S., Clemens, P. R., Mitani, K., Chen, H. H., Chan, S. & Caskey, C. T. (1996). A new adenoviral vector: Replacement of all viral coding sequences with 28 kb of DNA independently expressing both full-length dystrophin and beta-galactosidase. Proc. Natl Acad. Sci., USA, 93, 5731–6CrossRefGoogle ScholarPubMed
Kogure, K., Urabe, M., Mizukami, H.et al. (2001). Targeted integration of foreign DNA into a defined locus on chromosome 19 in K562 cells using AAV-derived components. Int. J. Hematol., 73, 469–75CrossRefGoogle ScholarPubMed
Kordower, J. H., Emborg, M. E., Bloch, J.et al. (2000). Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson's disease. Science, 290, 721–4CrossRefGoogle ScholarPubMed
Kornfeld, S. & Mellman, I. (1989). The biogenesis of lysosomes. Annu. Rev. Cell Biol., 5, 483–525CrossRefGoogle ScholarPubMed
Kotin, R. M., Siniscalco, M., Samulski, R. J.et al. (1990). Site-specific integration by adeno-associated virus. Proc. Natl Acad. Sci., USA, 87, 2211–5CrossRefGoogle ScholarPubMed
Krasnykh, V., Belousova, N., Korokhov, N., Mikheeva, G. & Curiel, D. T. (2001). Genetic targeting of an adenovirus vector via replacement of the fiber protein with the phage T4 fibritin. J. Virol., 75, 4176–83CrossRefGoogle ScholarPubMed
Kugler, S., Meyn, L., Holzmuller, H.et al. (2001). Neuron-specific expression of therapeutic proteins: evaluation of different cellular promoters in recombinant adenoviral vectors. Mol. Cell Neurosci., 17, 78–96CrossRefGoogle ScholarPubMed
Kuo, H., Ingram, D. K., Crystal, R. G. & Mastrangeli, A. (1995). Retrograde transfer of replication deficient recombinant adenovirus vector in the central nervous system for tracing studies. Brain Res., 705, 31–8CrossRefGoogle ScholarPubMed
Lachmann, R. H. & Efstathiou, S. (1997). Utilization of the herpes simplex virus type 1 latency-associated regulatory region to drive stable reporter gene expression in the nervous system. J. Virol., 71, 3197–207Google Scholar
Lachmann, R. H. & Efstathiou, S. (1999). Use of herpes simplex virus type 1 for transgene expression within the nervous system. Clin. Sci., 96, 533–41CrossRefGoogle Scholar
Lai, L., Davison, B. B., Veazey, R. S., Fisher, K. J. & Baskin, G. B. (2002). A preliminary evaluation of recombinant adeno-associated virus biodistribution in rhesus monkeys after intrahepatic inoculation in utero. Hum. Gene Ther., 13, 2027–39CrossRefGoogle ScholarPubMed
Laquerre, S., Anderson, D. B., Stolz, D. B. & Glorioso, J. C. (1998). Recombinant herpes simplex virus type 1 engineered for targeted binding to erythropoietin receptor-bearing cells. J. Virol., 72, 9683–97Google ScholarPubMed
Gal La Salle, G., Robert, J. J., Berrard, S.et al. (1993). An adenovirus vector for gene transfer into neurons and glia in the brain. Science, 259, 988–90CrossRefGoogle Scholar
Lee, E. J., Thimmapaya, B. & Jameson, J. L. (2000). Stereotactic injection of adenoviral vectors that target gene expression to specific pituitary cell types: implications for gene therapy. Neurosurgery, 46, 1461–8; discussion 1468–9CrossRefGoogle ScholarPubMed
Leib, D. A. & Olivo, P. D. (1993). Gene delivery to neurons: is herpes simplex virus the right tool for the job? Bioessays, 15, 547–54CrossRefGoogle Scholar
Limousin, P., Krack, P., Pollak, P.et al. (1998). Electrical stimulation of the subthalamic nucleus in advanced Parkinson's disease. N. Engl. J. Med., 339, 1105–11CrossRefGoogle ScholarPubMed
Lin, L. F., Doherty, D. H., Lile, J. D., Bektesh, S. & Collins, F. (1993). GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science, 260, 1130–2CrossRefGoogle ScholarPubMed
Liu, X. L., Clark, K. R. & Johnson, P. R. (1999). Production of recombinant adeno-associated virus vectors using a packaging cell line and a hybrid recombinant adenovirus. Gene Ther., 6, 293–9CrossRefGoogle Scholar
Logvinoff, C. & Epstein, A. L. (2001). A novel approach for herpes simplex virus type 1 amplicon vector production, using the Cre-loxP recombination system to remove helper virus. Hum. Gene Ther., 12, 161–7CrossRefGoogle ScholarPubMed
Lotery, A. J., Derksen, T. A., Russell, S. R.et al. (2002). Gene transfer to the nonhuman primate retina with recombinant feline immunodeficiency virus vectors. Hum. Gene Ther., 13, 689–96CrossRefGoogle ScholarPubMed
Lowenstein, P. R. (2002). Immunology of viral-vector-mediated gene transfer into the brain: an evolutionary and developmental perspective. Trends Immunol., 23, 23–30CrossRefGoogle ScholarPubMed
MacKenzie, T. C., Kobinger, G. P., Kootstra, N. A.et al. (2002). Efficient transduction of liver and muscle after in utero injection of lentiviral vectors with different pseudotypes. Mol. Ther., 6, 349–58CrossRefGoogle ScholarPubMed
Magnusson, M. K., Hong, S. S., Boulanger, P. & Lindholm, L. (2001). Genetic retargeting of adenovirus: novel strategy employing ‘deknobbing’ of the fiber. J. Virol., 75, 7280–9CrossRefGoogle ScholarPubMed
Mannes, A. J., Caudle, R. M., O'Connell, B. C. & Iadarola, M. J. (1998). Adenoviral gene transfer to spinal-cord neurons: intrathecal vs. intraparenchymal administration. Brain Res., 793, 1–6CrossRefGoogle ScholarPubMed
Mastakov, M. Y., Baer, K., Xu, R., Fitzsimons, H. & During, M. J. (2001). Combined injection of rAAV with mannitol enhances gene expression in the rat brain. Mol. Ther.: J. Am. Soc. Gene Ther., 3, 225–32CrossRefGoogle ScholarPubMed
Mastakov, M. Y., Baer, K., Kotin, R. M. & During, M. J. (2002). Recombinant adeno-associated virus serotypes 2- and 5-mediated gene transfer in the mammalian brain: quantitative analysis of heparin co-infusion. Mol. Ther., 5, 371–80CrossRefGoogle ScholarPubMed
Matsushita, T., Elliger, S., Elliger, C.et al. (1998). Adeno-associated virus vectors can be efficiently produced without helper virus. Gene Ther., 5, 938–45CrossRefGoogle ScholarPubMed
Mazarakis, N. D., Azzouz, M., Rohll, J. B.et al. (2001). Rabies virus glycoprotein pseudotyping of lentiviral vectors enables retrograde axonal transport and access to the nervous system after peripheral delivery. Hum. Mol. Genet., 10, 2109–21CrossRefGoogle ScholarPubMed
McCown, T. J., Xiao, X., Li, J., Breese, G. R. & Samulski, R. J. (1996). Differential and persistent expression patterns of CNS gene transfer by an adeno-associated virus (AAV) vector. Brain Res., 713, 99–107CrossRefGoogle ScholarPubMed
McGeer, P. L., McGeer, E. G. & Suzuki, J. S. (1977). Aging and extrapyramidal function. Arch. Neurol., 34, 33–5CrossRefGoogle ScholarPubMed
Millecamps, S., Kiefer, H., Navarro, V.et al. (1999). Neuron-restrictive silencer elements mediate neuron specificity of adenoviral gene expression. Nat. Biotech., 17, 865–9CrossRefGoogle ScholarPubMed
Millecamps, S., Nicolle, D., Ceballos-Picot, I., Mallet, J. & Barkats, M. (2001). Synaptic sprouting increases the uptake capacities of motoneurons in amyotrophic lateral sclerosis mice. Proc. Natl Acad. Sci., USA, 98, 7582–7CrossRefGoogle ScholarPubMed
Millecamps, S., Mallet, J. & Barkats, M. (2002). Adenoviral retrograde gene transfer in motoneurons is greatly enhanced by prior intramuscular inoculation with botulinum toxin. Hum. Gene Ther., 13, 225–32CrossRefGoogle ScholarPubMed
Miller, A. D., Garcia, J. V., Suhr, N., Lynch, C. M., Wilson, C. & Eiden, M. V. (1991). Construction and properties of retrovirus packaging cells based on gibbon ape leukemia virus. J. Virol., 65, 2220–4Google ScholarPubMed
Miller, D. G., Rutledge, E. A. & Russell, D. W. (2002). Chromosomal effects of adeno-associated virus vector integration. Nat. Genet., 30, 147–8CrossRefGoogle ScholarPubMed
Mitani, K., Graham, F. L., Caskey, C. T. & Kochanek, S. (1995). Rescue, propagation and partial purification of a helper virus-dependent adenovirus vector. Proc. Natl Acad. Sci., USA, 92, 3854–8CrossRefGoogle ScholarPubMed
Mitrophanous, K., Yoon, S., Rohll, J.et al. (1999). Stable gene transfer to the nervous system using a non-primate lentiviral vector. Gene Ther., 6, 1808–18CrossRefGoogle ScholarPubMed
Miyoshi, H., Takahashi, M., Gage, F. H. & Verma, I. M. (1997). Stable and efficient gene transfer into the retina using an HIV-based lentiviral vector. Proc. Natl Acad. Sci., USA, 94, 10319–23CrossRefGoogle ScholarPubMed
Miyoshi, H., Blomer, U., Takahashi, M., Gage, F. H. & Verma, I. M. (1998). Development of a self-inactivating lentivirus vector. J. Virol., 72, 8150–7Google ScholarPubMed
Mochizuki, H., Schwartz, J. P., Tanaka, K., Brady, R. O. & Reiser, J. (1998). High-titers human immunodeficiency virus type 1-based vector systems for gene delivery into nondividing cells. J. Virol., 72, 8873–83Google Scholar
Nakai, H., Iwaki, Y., Kay, M. A. & Couto, L. B. (1999). Isolation of recombinant adeno-associated virus vector-cellular DNA junctions from mouse liver. J. Virol., 73, 5438–47Google ScholarPubMed
Nakai, H., Storm, T. A. & Kay, M. A. (2000). Increasing the size of rAAV-mediated expression cassettes in vivo by intermolecular joining of two complementary vectors. Nat. Biotechnol., 18, 527–32CrossRefGoogle ScholarPubMed
Nakai, H., Montini, E., Fuess, S., Storm, T. A., Grompe, M. & Kay, M. A. (2003). AAV serotype 2 vectors preferentially integrate into active genes in mice. Nat. Genet., 34, 297–302CrossRefGoogle ScholarPubMed
Nakajima, T., Nakamaru, K., Ido, E., Terao, K., Hayami, M. & Hasegawa, M. (2000). Development of novel simian immunodeficiency virus vectors carrying a dual gene expression system. Hum. Gene Ther., 11, 1863–74CrossRefGoogle ScholarPubMed
Naldini, L., Blomer, U., Gage, F. H., Trono, D. & Verma, I. M. (1996a). Efficient transfer, integration and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc. Natl Acad. Sci., USA, 93, 11382–8CrossRefGoogle Scholar
Naldini, L., Blomer, U., Gallay, P.et al. (1996b). In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector [see comments]. Science, 272, 263–7CrossRefGoogle Scholar
Navarro, V., Millecamps, S., Geoffroy, M. C.et al. (1999). Efficient gene transfer and long-term expression in neurons using a recombinant adenovirus with a neuron-specific promoter. Gene Ther., 6, 1884–92CrossRefGoogle ScholarPubMed
Ng, P., Beauchamp, C., Evelegh, C., Parks, R. & Graham, F. L. (2001). Development of a FLP/frt system for generating helper-dependent adenoviral vectors. Mol. Ther., 3, 809–15CrossRefGoogle ScholarPubMed
Nguyen, J. B., Sanchez-Pernaute, R., Cunningham, J. & Bankiewicz, K. S. (2001). Convection-enhanced delivery of AAV-2 combined with heparin increases TK gene transfer in the rat brain. Neuroreport, 12, 1961–4CrossRefGoogle ScholarPubMed
Nicklin, S. A., Buening, H., Dishart, K. L.et al. (2001). Efficient and selective aav2-mediated gene transfer directed to human vascular endothelial cells. Mol. Ther., 4, 174–81CrossRefGoogle ScholarPubMed
Okada, T., Nomoto, T., Shimazaki, K.et al. (2002). Adeno-associated virus vectors for gene transfer to the brain. Methods, 28, 237–47CrossRefGoogle Scholar
Olivares, E. C., Hollis, R. P., Chalberg, T. W., Meuse, L., Kay, M. A. & Calos, M. P. (2002). Site-specific genomic integration produces therapeutic Factor IX levels in mice. Nat. Biotechnol., 20, 1124–8CrossRefGoogle ScholarPubMed
Page, K. A., Landau, N. R. & Littman, D. R. (1990). Construction and use of a human immunodeficiency virus vector for analysis of virus infectivity. J. Virol., 64, 5270–6Google ScholarPubMed
Palmer, J. A., Branston, R. H., Lilley, C. E.et al. (2000). Development and optimization of herpes simplex virus vectors for multiple long-term gene delivery to the peripheral nervous system. J. Virol., 74, 5604–18CrossRefGoogle ScholarPubMed
Palombo, F., Monciotti, A., Recchia, A., Cortese, R., Ciliberto, G. & Monica, N. (1998). Site-specific integration in mammalian cells mediated by a new hybrid baculovirus-adeno-associated virus vector. J. Virol., 72, 5025–34Google ScholarPubMed
Pardridge, W. M. (2002a). Drug and gene delivery to the brain: the vascular route. Circulation, 106, e220–1; author reply e220–1Google Scholar
Pardridge, W. M. (2002b). Drug and gene targeting to the brain with molecular Trojan horses. Nat. Rev. Drug Discover., 1, 131–9CrossRefGoogle Scholar
Peel, A. L. & Klein, R. L. (2000). Adeno-associated virus vectors: activity and applications in the CNS. J. Neurosci. Methods., 98, 95–104CrossRefGoogle ScholarPubMed
Podsakoff, G., Wong, K. K. Jr. & Chatterjee, S. (1994). Efficient gene transfer into nondividing cells by adeno-associated virus-based vectors. J. Virol., 68, 5656–66Google ScholarPubMed
Poeschla, E. M., Wong-Staal, F. & Looney, D. J. (1998). Efficient transduction of nondividing human cells by feline immunodeficiency virus lentiviral vectors. Nat. Med., 4, 354–7CrossRefGoogle ScholarPubMed
Poewe, W. H. & Wenning, G. K. (1996). The natural history of Parkinson's disease. Neurology, 47, S146–52CrossRefGoogle ScholarPubMed
Ponnazhagan, S., Erikson, D., Kearns, W. G.et al. (1997). Lack of site-specific integration of the recombinant adeno-associated virus 2 genomes in human cells. Hum. Gene Ther., 8, 275–84CrossRefGoogle ScholarPubMed
Poznansky, M., Lever, A., Bergeron, L., Haseltine, W. & Sodroski, J. (1991). Gene transfer into human lymphocytes by a defective human immunodeficiency virus type 1 vector. J. Virol., 65, 532–6Google ScholarPubMed
Ramezani, A., Hawley, T. S. & Hawley, R. G. (2000). Lentiviral vectors for enhanced gene expression in human hematopoietic cells. Mol. Ther., 2, 458–69CrossRefGoogle ScholarPubMed
Rampling, R., Cruickshank, G., Papanastassiou, V.et al. (2000). Toxicity evaluation of replication-competent herpes simplex virus (ICP 34.5 null mutant 1716) in patients with recurrent malignant glioma. Gene Ther., 7, 859–66CrossRefGoogle ScholarPubMed
Recchia, A., Parks, R. J., Lamartina, S.et al. (1999). Site-specific integration mediated by a hybrid adenovirus/adeno-associated virus vector. Proc. Natl Acad. Sci., USA, 96, 2615–20CrossRefGoogle ScholarPubMed
Reiser, J. (2000). Production and concentration of pseudotyped HIV-1-based gene transfer vectors. Gene Ther., 7, 910–13CrossRefGoogle ScholarPubMed
Richardson, J. H., Kaye, J. F., Child, L. A. & Lever, A. M. (1995). Helper virus-free transfer of human immunodeficiency virus type 1 vectors. J. Gen. Virol., 76, 691–6CrossRefGoogle ScholarPubMed
Rinaudo, D., Lamartina, S., Roscilli, G., Ciliberto, G. & Toniatti, C. (2000). Conditional site-specific integration into human chromosome 19 by using a ligand-dependent chimeric adeno-associated virus/Rep protein. J. Virol., 74, 281–94CrossRefGoogle Scholar
Rizzuto, G., Gorgoni, B., Cappelletti, M.et al. (1999). Development of animal models for adeno-associated virus site-specific integration. J. Virol., 73, 2517–26Google ScholarPubMed
Robert, J. J., Geoffroy, M. C., Finiels, F. & Mallet, J. (1997). An adenoviral vector-based system to study neuronal gene expression: analysis of the rat tyrosine hydroxylase promoter in cultured neurons. J. Neurochem., 68, 2152–60CrossRefGoogle ScholarPubMed
Rutledge, E. A. & Russell, D. W. (1997). Adeno-associated virus vector integration junctions. J. Virol., 71, 8429–36Google ScholarPubMed
Saeki, Y., Ichikawa, T., Saeki, A.et al. (1998). Herpes simplex virus type 1 DNA amplified as bacterial artificial chromosome in Escherichia coli: rescue of replication-competent virus progeny and packaging of amplicon vectors. Hum. Gene Ther., 9, 2787–94CrossRefGoogle ScholarPubMed
Saito, T. & Nakatsuji, N. (2001). Efficient gene transfer into the embryonic mouse brain using in vivo electroporation. Dev. Biol., 240, 237–46CrossRefGoogle Scholar
Salmon, P., Oberholzer, J., Occhiodoro, T., Morel, P., Lou, J. & Trono, D. (2000). Reversible immortalization of human primary cells by lentivector-mediated transfer of specific genes. Mol. Ther.: J. Am. Soc. Gene Ther., 2, 404–14CrossRefGoogle ScholarPubMed
Samaniego, L. A., Wu, N. & DeLuca, N. A. (1997). The herpes simplex virus immediate-early protein ICP0 affects transcription from the viral genome and infected-cell survival in the absence of ICP4 and ICP27. J. Virol., 71, 4614–25Google ScholarPubMed
Samaniego, L. A., Neiderhiser, L. & DeLuca, N. A. (1998). Persistence and expression of the herpes simplex virus genome in the absence of immediate-early proteins. J. Virol., 72, 3307–20Google ScholarPubMed
Satoh, W., Hirai, Y., Tamayose, K. & Shimada, T. (2000). Site-specific integration of an adeno-associated virus vector plasmid mediated by regulated expression of rep based on Cre-loxP recombination. J. Virol., 74, 10631–8CrossRefGoogle ScholarPubMed
Sauer, H., Rosenblad, C. & Bjorklund, A. (1995). Glial cell line-derived neurotrophic factor but not transforming growth factor beta 3 prevents delayed degeneration of nigral dopaminergic neurons following striatal 6-hydroxydopamine lesion. Proc. Natl Acad. Sci., USA, 92, 8935–9CrossRefGoogle Scholar
Scarpini, C. G., May, J., Lachmann, R. H.et al. (2001). Latency associated promoter transgene expression in the central nervous system after stereotaxic delivery of replication-defective HSV-1-based vectors. Gene Ther., 8, 1057–71CrossRefGoogle Scholar
Schultheiss, P. C., Gardner, S. A., Owens, J. M., Wenger, D. A. & Thrall, M. A. (2000). Mucopolysaccharidosis VII in a cat. Vet. Pathol., 37, 502–5CrossRefGoogle ScholarPubMed
Shen, J. S., Meng, X. L., Ohashi, T. & Eto, Y. (2002). Adenovirus-mediated prenatal gene transfer to murine central nervous system. Gene Ther., 9, 819–23CrossRefGoogle ScholarPubMed
Shen, Y., Muramatsu, S. I., Ikeguchi, K.et al. (2000). Triple transduction with adeno-associated virus vectors expressing tyrosine hydroxylase, aromatic-L-amino-acid decarboxylase and GTP cyclohydrolase I for gene therapy of Parkinson's disease. Hum. Gene Ther., 11, 1509–19CrossRefGoogle ScholarPubMed
Shi, N., Boado, R. J. & Pardridge, W. M. (2001a). Receptor-mediated gene targeting to tissues in vivo following intravenous administration of pegylated immunoliposomes. Pharmaceut. Res., 18, 1091–5CrossRefGoogle Scholar
Shi, N., Zhang, Y., Zhu, C., Boado, R. J. & Pardridge, W. M. (2001b). Brain-specific expression of an exogenous gene after i.v. administration. Proc. Natl Acad. Sci., USA, 98, 12754–9CrossRefGoogle Scholar
Smith, C., Lachmann, R. H. & Efstathiou, S. (2000). Expression from the herpes simplex virus type 1 latency-associated promoter in the murine central nervous system. J. Gen. Virol., 81 (3), 649–62CrossRefGoogle ScholarPubMed
Sollerbrant, K., Elmen, J., Wahlestedt, C.et al. (2001). A novel method using baculovirus-mediated gene transfer for production of recombinant adeno-associated virus vectors. J. Gen. Virol., 82, 2051–60CrossRefGoogle ScholarPubMed
Sosnowski, B. A., Gu, D. L., D'Andrea, M., Doukas, J. & Pierce, G. F. (1999). FGF2-targeted adenoviral vectors for systemic and local disease. Curr. Opin. Mol. Ther., 1, 573–9Google ScholarPubMed
Stavropoulos, T. A. & Strathdee, C. A. (1998). An enhanced packaging system for helper-dependent herpes simplex virus vectors. J. Virol., 72, 7137–43Google ScholarPubMed
Takahashi, M., Miyoshi, H., Verma, I. M. & Gage, F. H. (1999). Rescue from photoreceptor degeneration in the rd mouse by human immunodeficiency virus vector-mediated gene transfer. J. Virol., 73, 7812–16Google ScholarPubMed
Thomas, C. E., Birkett, D., Anozie, I., Castro, M. G. & Lowenstein, P. R. (2001). Acute direct adenoviral vector cytotoxicity and chronic, but not acute, inflammatory responses correlate with decreased vector-mediated transgene expression in the brain. Mol. Ther.: J. Am. Soc. Gene Ther., 3, 36–46CrossRefGoogle ScholarPubMed
Thomas, C. E., Schiedner, G., Kochanek, S., Castro, M. G. & Lowenstein, P. R. (2000). Peripheral infection with adenovirus causes unexpected long-term brain inflammation in animals injected intracranially with first-generation, but not with high-capacity, adenovirus vectors: toward realistic long-term neurological gene therapy for chronic diseases. Proc. Natl Acad. Sci., USA, 97, 7482–7CrossRefGoogle Scholar
Thomas, C. E., Schiedner, G., Kochanek, S., Castro, M. G. & Lowenstein, P. R. (2001). Preexisting antiadenoviral immunity is not a barrier to efficient and stable transduction of the brain, mediated by novel high-capacity adenovirus vectors. Hum. Gene Ther., 12, 839–46CrossRefGoogle Scholar
Tsunoda, H., Hayakawa, T., Sakuragawa, N. & Koyama, H. (2000). Site-specific integration of adeno-associated virus-based plasmid vectors in lipofected HeLa cells. Virology, 268, 391–401CrossRefGoogle ScholarPubMed
Ueno, T., Matsumura, H., Tanaka, K.et al. (2000). Site-specific integration of a transgene mediated by a hybrid adenovirus/adeno-associated virus vector using the Cre/loxP-expression-switching system. Biochem. Biophys. Res. Commun., 273, 473–8CrossRefGoogle ScholarPubMed
Waddington, S. N., Mitrophanous, K. A., Ellard, F. M.et al. (2003). Long-term transgene expression by administration of a lentivirus-based vector to the fetal circulation of immuno-competent mice. Gene Ther., 10, 1234–40CrossRefGoogle ScholarPubMed
Wang, B., Li, J. & Xiao, X. (2000). Adeno-associated virus vector carrying human minidystrophin genes effectively ameliorates muscular dystrophy in mdx mouse model. Proc. Natl Acad. Sci., USA, 97, 13714–19CrossRefGoogle ScholarPubMed
Wang, Q., Guo, J. & Jia, W. (1997). Intracerebral recombinant HSV-1 vector does not reactivate latent HSV-1. Gene Ther., 4, 1300–4CrossRefGoogle Scholar
Wickham, T. J., Haskard, D., Segal, D. & Kovesdi, I. (1997). Targeting endothelium for gene therapy via receptors up-regulated during angiogenesis and inflammation. Cancer Immunol. Immunother., 45, 149–51CrossRefGoogle ScholarPubMed
Wickham, T. J., Mathias, P., Cheresh, D. A. & Nemerow, G. R. (1993). Integrins alpha v beta 3 and alpha v beta 5 promote adenovirus internalization but not virus attachment. Cell, 73, 309–19CrossRefGoogle Scholar
Wu, P., Phillips, M. I., Bui, J. & Terwilliger, E. F. (1998). Adeno-associated virus vector-mediated transgene integration into neurons and other nondividing cell targets. J. Virol., 72, 5919–26Google ScholarPubMed
Xiao, X., Li, J. & Samulski, R. J. (1998). Production of high-titers recombinant adeno-associated virus vectors in the absence of helper adenovirus. J. Virol., 72, 2224–32Google Scholar
Xu, K., Ma, H., McCown, T. J., Verma, I. M. & Kafri, T. (2001). Generation of a stable cell line producing high-titers self-inactivating lentiviral vectors. Mol. Ther., 3, 97–104CrossRefGoogle ScholarPubMed
Yan, Z., Zhang, Y., Duan, D. & Engelhardt, J. F. (2000). Trans-splicing vectors expand the utility of adeno-associated virus for gene therapy. Proc. Natl Acad. Sci., USA, 97, 6716–21CrossRefGoogle ScholarPubMed
Zennou, V., Petit, C., Guetard, D., Nerhbass, U., Montagnier, L. & Charneau, P. (2000). HIV-1 genome nuclear import is mediated by a central DNA flap. Cell, 101, 173–85CrossRefGoogle ScholarPubMed
Zennou, V., Serguera, C., Sarkis, C.et al. (2001). The HIV-1 DNA flap stimulates HIV vector-mediated cell transduction in the brain. Nat. Biotechnol., 19, 446–50CrossRefGoogle Scholar
Zhang, Y., Jeong Lee, H., Boado, R. J. & Pardridge, W. M. (2002). Receptor-mediated delivery of an antisense gene to human brain cancer cells. J. Gene Med., 4, 183–94CrossRefGoogle ScholarPubMed
Zhang, Y., Calon, F., Zhu, C., Boado, R. J. & Pardridge, W. M. (2003). Intravenous nonviral gene therapy causes normalization of striatal tyrosine hydroxylase and reversal of motor impairment in experimental parkinsonism. Hum. Gene Ther., 14, 1–12CrossRefGoogle ScholarPubMed
Zhao, H., Otaki, J. M. & Firestein, S. (1996). Adenovirus-mediated gene transfer in olfactory neurons in vivo. J. Neurobiol., 30, 521–303.0.CO;2-5>CrossRefGoogle ScholarPubMed
Zou, L., Yuan, X., Zhou, H., Lu, H. & Yang, K. (2001). Helper-dependent adenoviral vector-mediated gene transfer in aged rat brain. Hum. Gene Ther., 12, 181–91CrossRefGoogle ScholarPubMed
Zou, L., Zhou, H., Pastore, L. & Yang, K. (2000). Prolonged transgene expression mediated by a helper-dependent adenoviral vector (hdAd) in the central nervous system. Mol. Ther., 2, 105–13CrossRefGoogle Scholar
Zufferey, R., Nagy, D., Mandel, R. J., Naldini, L. & Trono, D. (1997). Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat. Biotechnol., 15, 871–5CrossRefGoogle ScholarPubMed
Zufferey, R., Dull, T., Mandel, R. J.et al. (1998). Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J. Virol., 72, 9873–80Google ScholarPubMed
Zufferey, R., Donello, J. E., Trono, D. & Hope, T. J. (1999). Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J. Virol., 73, 2886–92Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Gene therapy
    • By Chamsy Sarkis, Laboratoire de Génétique Moléculaire de la Neurotransmission et des Processus, Neurodégénératifs (LGN) Centre National de la Recherche Scientifique UMR 7091, Hôpital Pitié-Salpétrière (Bâtiment CERVI), Paris, France, Jacques Mallet, Laboratoire de Génétique Moléculaire de la Neurotransmission et des Processus, Neurodégénératifs (LGN) Centre National de la Recherche Scientifique UMR 7091, Hôpital Pitié-Salpétrière (Bâtiment CERVI), Paris, France
  • M. Flint Beal, Cornell University, New York, Anthony E. Lang, University of Toronto, Albert C. Ludolph, Universität Ulm, Germany
  • Book: Neurodegenerative Diseases
  • Online publication: 04 August 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544873.023
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Gene therapy
    • By Chamsy Sarkis, Laboratoire de Génétique Moléculaire de la Neurotransmission et des Processus, Neurodégénératifs (LGN) Centre National de la Recherche Scientifique UMR 7091, Hôpital Pitié-Salpétrière (Bâtiment CERVI), Paris, France, Jacques Mallet, Laboratoire de Génétique Moléculaire de la Neurotransmission et des Processus, Neurodégénératifs (LGN) Centre National de la Recherche Scientifique UMR 7091, Hôpital Pitié-Salpétrière (Bâtiment CERVI), Paris, France
  • M. Flint Beal, Cornell University, New York, Anthony E. Lang, University of Toronto, Albert C. Ludolph, Universität Ulm, Germany
  • Book: Neurodegenerative Diseases
  • Online publication: 04 August 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544873.023
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Gene therapy
    • By Chamsy Sarkis, Laboratoire de Génétique Moléculaire de la Neurotransmission et des Processus, Neurodégénératifs (LGN) Centre National de la Recherche Scientifique UMR 7091, Hôpital Pitié-Salpétrière (Bâtiment CERVI), Paris, France, Jacques Mallet, Laboratoire de Génétique Moléculaire de la Neurotransmission et des Processus, Neurodégénératifs (LGN) Centre National de la Recherche Scientifique UMR 7091, Hôpital Pitié-Salpétrière (Bâtiment CERVI), Paris, France
  • M. Flint Beal, Cornell University, New York, Anthony E. Lang, University of Toronto, Albert C. Ludolph, Universität Ulm, Germany
  • Book: Neurodegenerative Diseases
  • Online publication: 04 August 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544873.023
Available formats
×