Book contents
- Frontmatter
- Contents
- List of contributors
- Preface
- Part I Basic aspects of neurodegeneration
- 1 Endogenous free radicals and antioxidants in the brain
- 2 Biological oxidants and therapeutic antioxidants
- 3 Mitochondria, metabolic inhibitors and neurodegeneration
- 4 Excitoxicity and excitatory amino acid antagonists in chronic neurodegenerative diseases
- 5 Glutamate transporters
- 6 Calcium binding proteins in selective vulnerability of motor neurons
- 7 Apoptosis in neurodegenerative diseases
- 8 Neurotrophic factors
- 9 Protein misfolding and cellular defense mechanisms in neurodegenerative diseases
- 10 Neurodegenerative disease and the repair of oxidatively damaged DNA
- 11 Compounds acting on ion channels
- 12 The role of nitric oxide and PARP in neuronal cell death
- 13 Copper and zinc in Alzheimer's disease and amyotrophic lateral sclerosis
- 14 The role of inflammation in Alzheimer's disease neuropathology and clinical dementia. From epidemiology to treatment
- 15 Selected genetically engineered models relevant to human neurodegenerative disease
- 16 Toxic animal models
- 17 A genetic outline of the pathways to cell death in Alzheimer's disease, Parkinson's disease, frontal dementias and related disorders
- 18 Neurophysiology of Parkinson's disease, levodopa-induced dyskinesias, dystonia, Huntington's disease and myoclonus
- Part II Neuroimaging in neurodegeneration
- Part III Therapeutic approaches in neurodegeneration
- Normal aging
- Part IV Alzheimer's disease
- Part VI Other Dementias
- Part VII Parkinson's and related movement disorders
- Part VIII Cerebellar degenerations
- Part IX Motor neuron diseases
- Part X Other neurodegenerative diseases
- Index
- References
13 - Copper and zinc in Alzheimer's disease and amyotrophic lateral sclerosis
from Part I - Basic aspects of neurodegeneration
Published online by Cambridge University Press: 04 August 2010
- Frontmatter
- Contents
- List of contributors
- Preface
- Part I Basic aspects of neurodegeneration
- 1 Endogenous free radicals and antioxidants in the brain
- 2 Biological oxidants and therapeutic antioxidants
- 3 Mitochondria, metabolic inhibitors and neurodegeneration
- 4 Excitoxicity and excitatory amino acid antagonists in chronic neurodegenerative diseases
- 5 Glutamate transporters
- 6 Calcium binding proteins in selective vulnerability of motor neurons
- 7 Apoptosis in neurodegenerative diseases
- 8 Neurotrophic factors
- 9 Protein misfolding and cellular defense mechanisms in neurodegenerative diseases
- 10 Neurodegenerative disease and the repair of oxidatively damaged DNA
- 11 Compounds acting on ion channels
- 12 The role of nitric oxide and PARP in neuronal cell death
- 13 Copper and zinc in Alzheimer's disease and amyotrophic lateral sclerosis
- 14 The role of inflammation in Alzheimer's disease neuropathology and clinical dementia. From epidemiology to treatment
- 15 Selected genetically engineered models relevant to human neurodegenerative disease
- 16 Toxic animal models
- 17 A genetic outline of the pathways to cell death in Alzheimer's disease, Parkinson's disease, frontal dementias and related disorders
- 18 Neurophysiology of Parkinson's disease, levodopa-induced dyskinesias, dystonia, Huntington's disease and myoclonus
- Part II Neuroimaging in neurodegeneration
- Part III Therapeutic approaches in neurodegeneration
- Normal aging
- Part IV Alzheimer's disease
- Part VI Other Dementias
- Part VII Parkinson's and related movement disorders
- Part VIII Cerebellar degenerations
- Part IX Motor neuron diseases
- Part X Other neurodegenerative diseases
- Index
- References
Summary
Introduction
The non-infectious neurodegenerative disorders, Alzheimer's disease, and amyotrophic lateral sclerosis are heterogeneous with respect to etiology, neuropathology and clinical presentation. Yet, these disorders share a number of features in common to suggest some common pathogenic events. Each disorder is age related and is characterized by progressive and symmetric degeneration of discrete populations of neurons. Each disorder is associated with biochemical markers of oxidative attack, and each is associated with deposition of a CuZn metalloprotein in affected tissue.
Molecular genetic analysis has linked autosomal dominant forms of AD, PD, and amyotrophic lateral sclerosis, respectively, to mutations in ß-amyloid precursor protein, α-synuclein, and superoxide dismutase 1. Each of these proteins or its proteolytic products may aggregate in affected tissue during the course of disease.
In this chapter we summarize current knowledge of CNS Cu and Zn metabolism in normal physiology. Then, focusing on AD and ALS, we review evidence for pathophysiologic Cu and Zn metabolism and evidence linking Cu and Zn to the physiologic and toxic activities of ß-amyloid protein and superoxide dismutase 1.
Protein interactions in brain copper and zinc metabolism
At the active site of many enzymes, Cu participates in one-electron transfer reactions. Zn, which is electrochemically inert, maintains structural stability of many proteins. In addition to these essential and ubiquitous roles for Cu and Zn, brain-specific functions exist for these metals.
- Type
- Chapter
- Information
- Neurodegenerative DiseasesNeurobiology, Pathogenesis and Therapeutics, pp. 157 - 165Publisher: Cambridge University PressPrint publication year: 2005