Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-06T08:03:28.987Z Has data issue: false hasContentIssue false

60 - Brain iron disorders

from Part X - Other neurodegenerative diseases

Published online by Cambridge University Press:  04 August 2010

M. Flint Beal
Affiliation:
Cornell University, New York
Anthony E. Lang
Affiliation:
University of Toronto
Albert C. Ludolph
Affiliation:
Universität Ulm, Germany
Satoshi Kono
Affiliation:
Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
Hiroaki Miyajima
Affiliation:
First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
Jonathan D. Gitlin
Affiliation:
Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
Get access

Summary

Introduction

Iron is an essential transition metal required for the binding and activation of dioxygen in a series of critical transport and redox reactions. The facile electron chemistry of iron also accounts for the toxicity of this metal and therefore intricate pathways have evolved to allow for the transport, trafficking and compartmentalization of iron within cells (Kaplan, 2002a). These pathways prevent the formation of iron-induced reactive oxygen intermediates that contribute to the pathogenesis of tissue injury in inherited disorders of iron homeostasis such as hemochromatosis with resultant cirrhosis, diabetes and cardiac failure (Lee et al., 2002). Within the central nervous system, iron is required for critical, diverse processes including neurotransmitter biosynthesis, myelin formation and nitric oxide signaling, as well as oxidative phosphorylation essential for sustaining brain energy requirements (Sipe et al., 2002). Despite this critical role of iron in brain function, the molecular and cellular details of iron metabolism within the human central nervous system remain poorly understood.

Iron uptake into the brain is dependent upon plasma transferrin and transferrin receptors localized to the microvasculature. Although both the apical membrane divalent iron transporter DMT1 and the basolateral transporter ferroportin are expressed within the central nervous system, the precise role of these proteins in brain iron homeostasis is currently unknown (Sipe et al., 2002). The intracellular iron binding protein ferritin is abundantly expressed in neurons and glia and presumably serves as the major source of iron storage within these cells.

Type
Chapter
Information
Neurodegenerative Diseases
Neurobiology, Pathogenesis and Therapeutics
, pp. 880 - 889
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abboud, S. & Haile, D. J. (2000). A novel mammalian iron-regulated protein involved in intracellular iron metabolism. J. Biol. Chem. 275, 19906–12CrossRefGoogle ScholarPubMed
Andrews, N. C. (2000). Iron metabolism: iron deficiency and iron overload. Annu. Rev. Genom. Hum. Genet., 1, 75–98CrossRefGoogle ScholarPubMed
Andrews, N. C. (2002). A genetic view of iron homeostasis. Semin. Hematol. 39, 227–34CrossRefGoogle ScholarPubMed
Askwith, C. D., Eide, A., Ho, P. S.et al. (1994). The FET3 gene of S. cerevisiae encodes a multicopper oxidase required for ferrous iron uptake. Cell, 76, 403–10CrossRefGoogle ScholarPubMed
Bosio, S., Gobbi, M., Roetto, A.et al. (2002). Anemia and iron overload due to compound heterozygosity for novel ceruloplasmin mutations. Blood, 100, 2246–8CrossRefGoogle ScholarPubMed
Calabrese, L., Carbonaro, M. & Musci, G. (1989). Presence of coupled trinuclear copper cluster in mammalian ceruloplasmin is essential for efficient electron transfer to oxygen. J. Biol. Chem., 264, 6183–7Google Scholar
Craven, C. M., Alexander, J., Eldridge, M.Kushner, J. P.Bernstein, S. & Kaplan, J. (1987). Tissue distribution and clearance kinetics of non-transferrin-bound iron in the hypotransferrinemic mouse: a rodent model for hemochromatosis. Proc. Natl Acad. Sci., USA, 84, 3457–61CrossRefGoogle ScholarPubMed
Crompton, D. E., Chinnery, P. F., Fey, C.et al. (2002). Neuroferritinopathy: a window on the role of iron in neurodegeneration. Blood Cells Mol. Dis., 29, 522–31CrossRefGoogle ScholarPubMed
Curtis, A. R., Fey, C., Morris, C. M.et al. (2001). Mutation in the gene encoding ferritin light polypeptide causes dominant adult-onset basal ganglia disease. Nat. Genet., 28, 350–4CrossRefGoogle ScholarPubMed
Daimon, M., Kato, T., Kawanami, T.et al. (1995a). A nonsense mutation of the ceruloplasmin gene in hereditary ceruloplasmin deficiency with diabetes mellitus. Biochem. Biophys. Res. Commun., 217, 89–95CrossRefGoogle Scholar
Daimon, M., Yamatani, K., Igarashi, M.et al. (1995b). Fine structure of the human ceruloplasmin gene. Biochem. Biophys. Res. Commun., 208, 1028–35CrossRefGoogle Scholar
Daimon, M., Moriai, S., Susa, S., Yamatani, K., Hosoya, T. & Kato, T. (1999). Hypocaeruloplasminaemia with heteroallelic caeruloplasmin gene mutation: MRI of the brain. Neuroradiology, 41, 185–7CrossRefGoogle Scholar
Daimon, M., Susa, S., Ohizumi, T.et al. (2000). A novel mutation of the ceruloplasmin gene in a patient with heteroallelic ceruloplasmin gene mutation (HypoCPGM). Tohoku J. Exp. Med., 191, 119–25CrossRefGoogle Scholar
Donovan, A., Brownlie, A., Zhou, Y.et al. (2000). Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature, 403, 776–81CrossRefGoogle ScholarPubMed
Fortna, R. R., Watson, H. A. & Nyquist, S. E. (1999). Glycosyl phosphatidylinositol-anchored ceruloplasmin is expressed by rat Sertoli cells and is concentrated in detergent-insoluble membrane fractions. Biol. Reprod., 61, 1042–9CrossRefGoogle ScholarPubMed
Gitlin, J. D. (1998). Aceruloplasminemia. Pediatr. Res., 44, 271–6CrossRefGoogle ScholarPubMed
Harris, Z. L., Durley, A. P., Man, T. K. & Gitlin, J. D. (1999). Targeted gene disruption reveals an essential role for ceruloplasmin in cellular iron efflux. Proc. Natl Acad. Sci., USA, 96, 10812–17CrossRefGoogle ScholarPubMed
Harris, Z. L., Takahashi, Y., Miyajima, H., Serizawa, M., MacGillivray, R. T. & Gitlin, J. D. (1995). Aceruloplasminemia: molecular characterization of this disorder of iron metabolism. Proc. Natl Acad. Sci., USA, 92, 2539–43CrossRefGoogle ScholarPubMed
Harris, Z. L., Migas, M. C., Hughes, A. E., Logan, J. L. & Gitlin, J. D. (1996). Familial dementia due to a frameshift mutation in the caeruloplasmin gene. Quart. J. Med., 89, 355–9CrossRefGoogle Scholar
Harris, Z. L., Klomp, L. W. & Gitlin, J. D. (1998). Aceruloplasminemia: an inherited neurodegenerative disease with impairment of iron homeostasis. Am. J. Clin. Nutr., 67, 972S–7SCrossRefGoogle ScholarPubMed
Hayflick, S. J., Westaway, S. K., Levinson, B.et al. (2003). Genetic, clinical, and radiographic delineation of Hallervorden–Spatz syndrome. N. Engl. J. Med., 348, 33–40CrossRefGoogle ScholarPubMed
Hellman, N. E. & Gitlin, J. D. (2002). Ceruloplasmin metabolism and function. Annu. Rev. Nutr., 22, 439–58CrossRefGoogle ScholarPubMed
Hellman, N. E., Schaefer, M., Gehrke, S.et al. (2000). Hepatic iron overload in aceruloplasminaemia. Gut, 47, 858–60CrossRefGoogle ScholarPubMed
Hellman, N. E., Kono, S., Mancini, G. M., Hoogeboom, A. J., Jong, G. J. & Gitlin, J. D. (2002a). Mechanisms of copper incorporation into human ceruloplasmin. J. Biol. Chem., 277, 46632–8CrossRefGoogle Scholar
Hellman, N. E., Kono, S., Miyajima, H. & Gitlin, J. D. (2002b). Biochemical analysis of a missense mutation in aceruloplasminemia. J. Biol. Chem., 277, 1375–80CrossRefGoogle Scholar
Jeong, S. Y. & David, S. (2003). GPI-anchored ceruloplasmin is required for iron efflux from cells in the central nervous system. J. Biol. Chem.
Kaneko, K., Yoshida, K., Arima, K.et al. (2002). Astrocytic deformity and globular structures are characteristic of the brains of patients with aceruloplasminemia. J. Neuropathol. Exp. Neurol., 61, 1069–77CrossRefGoogle ScholarPubMed
Kaplan, J. (2002a). Mechanisms of cellular iron acquisition: another iron in the fire. Cell, 111, 603–6CrossRefGoogle Scholar
Kaplan, J. (2002b). Strategy and tactics in the evolution of iron acquisition. Semin. Hematol., 39, 219–26CrossRefGoogle Scholar
Kato, T., Daimon, M., Kawanami, T., Ikezawa, Y., Sasaki, H. & Maeda, K. (1997). Islet changes in hereditary ceruloplasmin deficiency. Hum. Pathol., 28, 499–502CrossRefGoogle ScholarPubMed
Kaur, D., Yantiri, F., Rajagopalan, S.et al. (2003). Genetic or pharmacological iron chelation prevents MPTP-induced neurotoxicity in vivo: a novel therapy for Parkinson's disease. Neuron, 37, 899–909CrossRefGoogle ScholarPubMed
Klomp, L. W. & Gitlin, J. D. (1996). Expression of the ceruloplasmin gene in the human retina and brain: implications for a pathogenic model in aceruloplasminemia. Hum. Mol. Genet., 5, 1989–96CrossRefGoogle ScholarPubMed
Klomp, L. W., Farhangrazi, Z. S., Dugan, L. L. & Gitlin, J. D. (1996). Ceruloplasmin gene expression in the murine central nervous system. J. Clin. Invest., 98, 207–15CrossRefGoogle ScholarPubMed
Kohno, S., Miyajima, H., Takahashi, Y. & Inoue, Y. (2000). Aceruloplasminemia with a novel mutation associated with parkinsonism. Neurogenetics, 2, 237–8CrossRefGoogle ScholarPubMed
Koschinsky, M. L., Chow, B. K., Schwartz, J., Hamerton, J. L. & MacGillivray, R. T. (1987). Isolation and characterization of a processed gene for human ceruloplasmin. Biochemistry, 26, 7760–7CrossRefGoogle ScholarPubMed
Lee, G. R., Nacht, S., Lukens, J. N. & Cartwright, G. E. (1968). Iron metabolism in copper-deficient swine. J. Clin. Invest., 47, 2058–69CrossRefGoogle ScholarPubMed
Lee, P., Gelbart, T., West, C., Halloran, C. & Beutler, E. (2002). Seeking candidate mutations that affect iron homeostasis. Blood Cells Mol. Dis., 29, 471–87CrossRefGoogle ScholarPubMed
Logan, J. I., Harveyson, K. B., Wisdom, G. B., Hughes, A. E. & Archbold, G. P. (1994). Hereditary caeruloplasmin deficiency, dementia and diabetes mellitus. Quart. J. Med., 87, 663–70Google ScholarPubMed
Loreal, O., Turlin, B., Pigeon, C.et al. (2002). Aceruloplasminemia: new clinical, pathophysiological and therapeutic insights. J. Hepatol., 36, 851–6CrossRefGoogle ScholarPubMed
McKie, A. T., Marciani, P., Rolfs, A.et al. (2000). A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Mol. Cel., 5, 299–309CrossRefGoogle ScholarPubMed
Miyajima, H., Nishimura, Y., Mizoguchi, K., Sakamoto, M., Shimizu, T. & Honda, N. (1987). Familial apoceruloplasmin deficiency associated with blepharospasm and retinal degeneration. Neurology, 37, 761–7CrossRefGoogle ScholarPubMed
Miyajima, H., Takahashi, Y., Kamata, T., Shimizu, H., Sakai, N. & Gitlin, J. D. (1997). Use of desferrioxamine in the treatment of aceruloplasminemia. Ann. Neurol., 41, 404–7CrossRefGoogle ScholarPubMed
Miyajima, H., Fujimoto, M., Kohno, S., Kaneko, E. & Gitlin, J. D. (1998). CSF abnormalities in patients with aceruloplasminemia. Neurology, 51, 1188–90CrossRefGoogle ScholarPubMed
Miyajima, H., Kohno, S., Takahashi, Y., Yonekawa, O. & Kanno, T. (1999). Estimation of the gene frequency of aceruloplasminemia in Japan. Neurology, 53, 617–19CrossRefGoogle ScholarPubMed
Miyajima, H., Kono, S., Takahashi, Y., Sugimoto, M., Sakamoto, M. & Sakai, N. (2001). Cerebellar ataxia associated with heteroallelic ceruloplasmin gene mutation. Neurology, 57, 2205–10CrossRefGoogle ScholarPubMed
Miyajima, H., Kono, S., Takahashi, Y. & Sugimoto, M. (2002). Increased lipid peroxidation and mitochondrial dysfunction in aceruloplasminemia brains. Blood Cells Mol. Dis., 29, 433–8CrossRefGoogle ScholarPubMed
Miyajima, H., Takahashi, Y. & Kono, S. (2003). Aceruloplasminemia, an inherited disorder of iron metabolism. Biometals, 16, 205–13CrossRefGoogle ScholarPubMed
Montosi, G., Donovan, A., Totaro, A.et al. (2001). Autosomal-dominant hemochromatosis is associated with a mutation in the ferroportin (SLC11A3) gene. J. Clin. Invest., 108, 619–23CrossRefGoogle ScholarPubMed
Morita, H., Ikeda, S., Yamamoto, K.et al. (1995). Hereditary ceruloplasmin deficiency with hemosiderosis: a clinicopathological study of a Japanese family. Ann. Neurol., 37, 646–56CrossRefGoogle ScholarPubMed
Nittis, T. & Gitlin, J. D. (2002). The copper-iron connection: hereditary aceruloplasminemia. Semin. Hematol., 39, 282–9CrossRefGoogle ScholarPubMed
Njajou, O. T., Vaessen, N., Joosse, M.et al. (2001). A mutation in SLC11A3 is associated with autosomal dominant hemochromatosis. Nat. Genet., 28, 213–14CrossRefGoogle ScholarPubMed
Okamoto, N., Wada, S., Oga, T.et al. (1996). Hereditary ceruloplasmin deficiency with hemosiderosis. Hum. Genet., 97, 755–8CrossRefGoogle ScholarPubMed
Osaki, S., Johnson, D. A. & Frieden, E. (1966). The possible significance of the ferrous oxidase activity of ceruloplasmin in normal human serum. J. Biol. Chem., 241, 2746–51Google ScholarPubMed
Osaki, S., Johnson, D. A. & Frieden, E. (1971). The mobilization of iron from the perfused mammalian liver by a serum copper enzyme, ferroxidase I. J. Biol. Chem., 246, 3018–23Google ScholarPubMed
Patel, B. N. & David, S. (1997). A novel glycosylphosphatidylinositol-anchored form of ceruloplasmin is expressed by mammalian astrocytes. J. Biol. Chem., 272, 20185–90CrossRefGoogle ScholarPubMed
Patel, B. N., Dunn, R. J. & David, S. (2000). Alternative RNA splicing generates a glycosylphosphatidylinositol-anchored form of ceruloplasmin in mammalian brain. J. Biol. Chem., 275, 4305–10CrossRefGoogle ScholarPubMed
Patel, B. N., Dunn, R. J., Jeong, S. Y., Zhu, Q., Julien, J. P. & David, S. (2002). Ceruloplasmin regulates iron levels in the CNS and prevents free radical injury. J. Neurosci., 22, 6578–86CrossRefGoogle ScholarPubMed
Roeser, H. P., Lee, G. R., Nacht, S. & Cartwright, G. E. (1970). The role of ceruloplasmin in iron metabolism. J. Clin. Invest., 49, 2408–17CrossRefGoogle ScholarPubMed
Sato, M. & Gitlin, J. D. (1991). Mechanisms of copper incorporation during the biosynthesis of human ceruloplasmin. J. Biol. Chem., 266, 5128–34Google ScholarPubMed
Sipe, J. C., Lee, P. & Beutler, E. (2002). Brain iron metabolism and neurodegenerative disorders. Dev. Neurosci., 24, 188–96CrossRefGoogle ScholarPubMed
Takahashi, Y., Miyajima, H., Shirabe, S., Nagataki, S., Suenaga, A. & Gitlin, J. D. (1996). Characterization of a nonsense mutation in the ceruloplasmin gene resulting in diabetes and neurodegenerative disease. Hum. Mol. Genet., 5, 81–4CrossRefGoogle ScholarPubMed
Takeuchi, Y., Yoshikawa, M., Tsujino, T.et al. (2002). A case of aceruloplasminaemia: abnormal serum ceruloplasmin protein without ferroxidase activity. J. Neurol. Neurosurg. Psychiatr., 72, 543–5Google ScholarPubMed
Torti, F. M. & Torti, S. V. (2002). Regulation of ferritin genes and protein. Blood, 99, 3505–16CrossRefGoogle Scholar
Vulpe, C. D., Kuo, Y. M., Murphy, T. L.et al. (1999). Hephaestin, a ceruloplasmin homologue implicated in intestinal iron transport, is defective in the sla mouse. Nat. Genet., 21, 195–9CrossRefGoogle ScholarPubMed
Yazaki, M., Yoshida, K., Nakamura, A.et al. (1998). A novel splicing mutation in the ceruloplasmin gene responsible for hereditary ceruloplasmin deficiency with hemosiderosis. J. Neurol. Sci., 156, 30–4CrossRefGoogle ScholarPubMed
Yonekawa, M., Okabe, T., Asamoto, Y. & Ohta, M. (1999). A case of hereditary ceruloplasmin deficiency with iron deposition in the brain associated with chorea, dementia, diabetes mellitus and retinal pigmentation: administration of fresh-frozen human plasma. Eur. Neurol., 42, 157–62CrossRefGoogle ScholarPubMed
Yoshida, K., Furihata, K., Takeda, S.et al. (1995). A mutation in the ceruloplasmin gene is associated with systemic hemosiderosis in humans. Nat. Genet., 9, 267–72CrossRefGoogle ScholarPubMed
Zhou, B., Westaway, S. K., Levinson, B., Johnson, M. A., Gitschier, J. & Hayflick, S. J. (2001). A novel pantothenate kinase gene (PANK2) is defective in Hallervorden–Spatz syndrome. Nat. Genet., 28, 345–9CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Brain iron disorders
    • By Satoshi Kono, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA, Hiroaki Miyajima, First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan, Jonathan D. Gitlin, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
  • M. Flint Beal, Cornell University, New York, Anthony E. Lang, University of Toronto, Albert C. Ludolph, Universität Ulm, Germany
  • Book: Neurodegenerative Diseases
  • Online publication: 04 August 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544873.061
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Brain iron disorders
    • By Satoshi Kono, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA, Hiroaki Miyajima, First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan, Jonathan D. Gitlin, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
  • M. Flint Beal, Cornell University, New York, Anthony E. Lang, University of Toronto, Albert C. Ludolph, Universität Ulm, Germany
  • Book: Neurodegenerative Diseases
  • Online publication: 04 August 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544873.061
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Brain iron disorders
    • By Satoshi Kono, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA, Hiroaki Miyajima, First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan, Jonathan D. Gitlin, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
  • M. Flint Beal, Cornell University, New York, Anthony E. Lang, University of Toronto, Albert C. Ludolph, Universität Ulm, Germany
  • Book: Neurodegenerative Diseases
  • Online publication: 04 August 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544873.061
Available formats
×