Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-08T07:45:57.734Z Has data issue: false hasContentIssue false

7 - Melanocortins and the control of body weight

Published online by Cambridge University Press:  15 September 2009

Virginie Tolle
Affiliation:
MR. 549 INSERM-Université Paris, V, IFR Broca Ste-Anne, Paris, France
Malcolm J. Low
Affiliation:
Center for the Study of Weight Regulation, Mail code L481, Oregon Health & Science University, 3181, SW Sam Jackson Park Road, Portland, OR 97239–3098, USA
Jenni Harvey
Affiliation:
University of Dundee
Dominic J. Withers
Affiliation:
Imperial College of Science, Technology and Medicine, London
Get access

Summary

Introduction

The initial report that melanocortin peptides potently inhibit food intake after central administration was published in 1986 (Poggioli et al., 1986). Because the melanocortin receptors had not yet been cloned or shown to be expressed in the brain, there was no physiological context to fully appreciate the significance of these data. In the two decades since that first publication, a remarkable web of experimental findings has firmly established the melanocortin system as a critical component in the brain's control of energy homeostasis. A key breakthrough was the cloning and characterization of the agouti gene from the “obese yellow” mouse (Lu et al., 1994). This spontaneous mutant strain expresses a dominant agouti AY allele and has an obesity phenotype in addition to a yellow coat color. The demonstration that agouti is an antagonist of melanocortin receptors (MCR), together with the findings of ectopic brain expression of the peptide and expression of MC3R and MC4R in the brain was the genesis of the “agouti-melanocortin” hypothesis for the mechanism of obesity in AY mice. Critical elements of this hypothesis were substantiated in 1997 by a trilogy of publications. First, targeted inactivation of the gene encoding the brain-specific MC4R caused an obesity phenotype similar to that of AY mice (Huszar et al., 1997). Second, novel agonists and antagonists of the MC3/4R inhibited or stimulated feeding, respectively, when injected into the 3rd ventricle in rodents (Fan et al., 1997).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, C. R., Rossi, M., Kim, M.et al. (2000). Investigation of the melanocyte stimulating hormones on food intake. Lack of evidence to support a role for the melanocortin-3-recepto?. Brain Res. 869, 203–10.CrossRefGoogle Scholar
Adan, R. A. (2006). Constitutive receptor activity series: endogenous inverse agonists and constitutive receptor activity in the melanocortin syste?. Trends Pharmacol. Sci. 27, 183–6.CrossRefGoogle Scholar
Adan, R. A. & Kas, M. J. (2003). Inverse agonism gains weigh?. Trends Pharmacol. Sci. 24, 315–21.CrossRefGoogle Scholar
Adan, R. A., Tiesjema, B., Hillebrand, J. J., Fleur, S. E., Kas, M. J. & Krom, M. (2006). The MC4 receptor and control of appetit?. Br. J. Pharmacol. 149, 815–27.CrossRefGoogle Scholar
Alvaro, J. D., Taylor, J. R. & Duman, R. S. (2003). Molecular and behavioral interactions between central melanocortins and cocain?. J. Pharmacol. Exp. Ther. 304, 391–9.CrossRefGoogle Scholar
Appleyard, S. M., Hayward, M., Young, J. I.et al. (2003). A role for the endogenous opioid beta-endorphin in energy homeostasi?. Endocrinology 144, 1753–60.CrossRefGoogle Scholar
Azzara, A. V., Sokolnicki, J. P. & Schwartz, G. J. (2002). Central melanocortin receptor agonist reduces spontaneous and scheduled meal size but does not augment duodenal preload-induced feeding inhibitio?. Physiol. Behav. 77, 411–16.CrossRefGoogle ScholarPubMed
Balthasar, N., Dalgaard, L. T., Lee, C. E.et al. (2005). Divergence of melanocortin pathways in the control of food intake and energy expenditur?. Cell 123, 493–505.CrossRefGoogle Scholar
Banno, R., Arima, H., Sato, I.et al. (2004). The melanocortin agonist melanotan II increases insulin sensitivity in OLETF rat?. Peptides 25, 1279–86.CrossRefGoogle Scholar
Baran, K., Preston, E., Wilks, D., Cooney, G. J., Kraegen, E. W. & Sainsbury, A. (2002). Chronic central melanocortin-4 receptor antagonism and central neuropeptide-Y infusion in rats produce increased adiposity by divergent pathway?. Diabetes 51, 152–8.CrossRefGoogle Scholar
Barb, C. R., Robertson, A. S., Barrett, J. B., Kraeling, R. R. & Houseknecht, K. L. (2004). The role of melanocortin-3 and -4 receptor in regulating appetite, energy homeostasis and neuroendocrine function in the pi?. J. Endocrinol. 181, 39–52.CrossRefGoogle Scholar
Benoit, S. C., Tracy, A. L., Air, E. L., Kinzig, K., Seeley, R. J. & Davidson, T. L. (2001). The role of the hypothalamic melanocortin system in behavioral appetitive processe?. Pharmacol. Biochem. Behav. 69, 603–9.CrossRefGoogle Scholar
Bewick, G. A., Gardiner, J. V., Dhillo, W. S.et al. (2005). Post-embryonic ablation of AgRP neurons in mice leads to a lean, hypophagic phenotyp?. Faseb J. 19, 1680–2.CrossRefGoogle Scholar
Biebermann, H., Castaneda, T. R., Landeghem, F.et al. (2006). A role for beta-melanocyte-stimulating hormone in human body-weight regulatio?. Cell Metab. 3, 141–6.CrossRefGoogle Scholar
Boston, B. A. (1999). The role of melanocortins in adipocyte functio?. Ann. N. Y. Acad. Sci. 885, 75–84.CrossRefGoogle Scholar
Bradley, R. L., Mansfield, J. P. & Maratos-Flier, E. (2005). Neuropeptides, including neuropeptide Y and melanocortins, mediate lipolysis in murine adipocyte?. Obes. Res. 13, 653–61.CrossRefGoogle Scholar
Breit, A., Wolff, K., Kalwa, H., Jarry, H., Buch, T. & Gudermann, T. (2006). The natural inverse agonist agouti-related protein induces arrestin-mediated endocytosis of melanocortin-3 and -4 receptor?. J. Biol. Chem. 281, 37447–56.CrossRefGoogle Scholar
Brennan, M. B., Costa, J. L., Forbes, S., Reed, P., Bui, S. & Hochgeschwender, U. (2003). Alpha-melanocyte-stimulating hormone is a peripheral, integrative regulator of glucose and fat metabolis?. Ann. N. Y. Acad. Sci. 994, 282–7.CrossRefGoogle Scholar
Buijs, R. M., Chun, S. J., Niijima, A., Romijn, H. J. & Nagai, K. (2001). Parasympathetic and sympathetic control of the pancreas: a role for the suprachiasmatic nucleus and other hypothalamic centers that are involved in the regulation of food intak?. J. Comp. Neurol. 431, 405–23.3.0.CO;2-D>CrossRefGoogle Scholar
Butler, A. A. (2006). The melanocortin system and energy balanc?. Peptides 27, 281–90.CrossRefGoogle Scholar
Butler, A. A., Kesterson, R. A., Khong, K.et al. (2000). A unique metabolic syndrome causes obesity in the melanocortin-3 receptor-deficient mous?. Endocrinology 141, 3518–21.CrossRefGoogle Scholar
Butler, A. A., Marks, D. L., Fan, W., Kuhn, C. M.Bartolome, M. & Cone, R. D. (2001). Melanocortin-4 receptor is required for acute homeostatic responses to increased dietary fa?. Nat. Neurosci. 4, 605–11.CrossRefGoogle Scholar
Vaca, Cabeza S., Kim, G. Y. & Carr, K. D. (2002). The melanocortin receptor agonist MTII augments the rewarding effect of amphetamine in ad-libitum-fed and food restricted rat?. Psychopharmacology (Berl.) 161, 77–85.CrossRefGoogle Scholar
Cettour-Rose, P. & Rohner-Jeanrenaud, F. (2002). The leptin-like effects of 3-d peripheral administration of a melanocortin agonist are more marked in genetically obese Zucker (fa/fa) than in lean rat?. Endocrinology 143, 2277–83.CrossRefGoogle Scholar
Challis, B. G., Coll, A. P., Yeo, G. S.et al. (2004). Mice lacking pro-opiomelanocortin are sensitive to high-fat feeding but respond normally to the acute anorectic effects of peptide-YY(3-36?. Proc. Natl. Acad. Sci. USA 101, 4695–700.CrossRefGoogle ScholarPubMed
Chandler, P. C., Viana, J. B., Oswald, K. D., Wauford, P. K. & Boggiano, M. M. (2005). Feeding response to melanocortin agonist predicts preference for and obesity from a high-fat die?. Physiol. Behav. 85, 221–30.CrossRefGoogle Scholar
Chen, A. S., Marsh, D. J., Trumbauer, M. E.et al. (2000a). Inactivation of the mouse melanocortin-3 receptor results in increased fat mass and reduced lean body mas?. Nat. Genet. 26, 97–102.Google Scholar
Chen, A. S., Metzger, J. M., Trumbauer, M. E.et al. (2000b). Role of the melanocortin-4 receptor in metabolic rate and food intake in mic?. Transgenic Res. 9, 145–54.CrossRefGoogle Scholar
Chen, M., Celik, A., Georgeson, K. E., Harmon, C. M. & Yang, Y. (2006). Molecular basis of melanocortin-4 receptor for AGRP inverse agonis?. Regul. Pept. 136, 40–9.CrossRefGoogle Scholar
Chen, W., Kelly, M. A., Opitz-Araya, X., Thomas, R. E., Low, M. J. & Cone, R. D. (1997). Exocrine gland dysfunction in MC5-R-deficient mice: evidence for coordinated regulation of exocrine gland function by melanocortin peptide?. Cell 91, 789–98.CrossRefGoogle Scholar
Cowley, M. A., Smart, J. L., Rubinstein, M.et al. (2001). Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleu?. Nature 411, 480–4.CrossRefGoogle Scholar
Creemers, J. W., Pritchard, L. E., Gyte, A.et al. (2006). Agouti-related protein is posttranslationally cleaved by proprotein convertase 1 to generate agouti-related protein (AgRP)83-132: interaction between AGRP83-132 and melanocortin receptors cannot be influenced by syndecan-?. Endocrinology 147, 1621–31.CrossRefGoogle ScholarPubMed
Souza, F. S., Bumaschny, V. F., Low, M. J. & Rubinstein, M. (2005a). Subfunctionalization of expression and peptide domains following the ancient duplication of the proopiomelanocortin gene in teleost fishe?. Mol. Biol. Evol. 22, 2417–27.CrossRefGoogle Scholar
Souza, F. S., Santangelo, A. M., Bumaschny, V.et al. (2005b). Identification of neuronal enhancers of the proopiomelanocortin gene by transgenic mouse analysis and phylogenetic footprintin?. Mol. Cell Biol. 25, 3076–86.CrossRefGoogle Scholar
DeBoer, M. D. & Marks, D. L. (2006). Therapy insight: use of melanocortin antagonists in the treatment of cachexia in chronic diseas?. Nat. Clin. Pract. Endocrinol. Metab. 2, 459–66.CrossRefGoogle Scholar
Fan, W., Boston, B. A., Kesterson, R. A., Hruby, V. J. & Cone, R. D. (1997). Role of melanocortinergic neurons in feeding and the agouti obesity syndrom?. Nature 385, 165–8.CrossRefGoogle Scholar
Fan, W., Dinulescu, D. M., Butler, A. A., Zhou, J., Marks, D. L. & Cone, R. D. (2000). The central melanocortin system can directly regulate serum insulin level?. Endocrinology 141, 3072–9.CrossRefGoogle Scholar
Fliers, E., Kreier, F., Voshol, P. J.et al. (2003). White adipose tissue: getting nervou?. J. Neuroendocrinol. 15, 1005–10.CrossRefGoogle Scholar
Florijn, W. J., Mulder, A. H., Versteeg, D. H. & Gispen, W. H. (1993). Adrenocorticotropin/alpha-melanocyte-stimulating hormone (ACTH/MSH)-like peptides modulate adenylate cyclase activity in rat brain slices: evidence for an ACTH/MSH receptor-coupled mechanis?. J. Neurochem. 60, 2204–11.CrossRefGoogle Scholar
Forbes, S., Bui, S., Robinson, B. R., Hochgeschwender, U. & Brennan, M. B. (2001). Integrated control of appetite and fat metabolism by the leptin-proopiomelanocortin pathwa?. Proc. Natl. Acad. Sci. USA 98, 4233–7.CrossRefGoogle Scholar
Goto, K., Inui, A., Takimoto, Y.et al. (2003). Acute intracerebroventricular administration of either carboxyl-terminal or amino-terminal fragments of agouti-related peptide produces a long-term decrease in energy expenditure in rat?. Int. J. Mol. Med. 12, 379–83.Google ScholarPubMed
Graham, M., Shutter, J. R., Sarmiento, U., Sarosi, I. & Stark, K. L. (1997). Overexpression of Agrt leads to obesity in transgenic mic?. Nat. Genet. 17, 273–4.CrossRefGoogle Scholar
Grill, H. J. & Norgren, R. (1978). Chronically decerebrate rats demonstrate satiation but not bait shynes?. Science 201, 267–9.CrossRefGoogle ScholarPubMed
Grill, H. J., Ginsberg, A. B., Seeley, R. J. & Kaplan, J. M. (1998). Brainstem application of melanocortin receptor ligands produces long-lasting effects on feeding and body weigh?. J. Neurosci. 18, 10 128–35.CrossRefGoogle Scholar
Gropp, E., Shanabrough, M., Borok, E.et al. (2005). Agouti-related peptide-expressing neurons are mandatory for feedin?. Nat. Neurosci. 8, 1289–91.CrossRefGoogle Scholar
Hagan, M. M., Rushing, P. A., Pritchard, L. M.et al. (2000). Long-term orexigenic effects of AgRP-(83-132) involve mechanisms other than melanocortin receptor blockad?. Am. J. Physiol. Regul. Integr. Comp. Physiol. 279, R47–52.CrossRefGoogle Scholar
Hagan, M. M., Benoit, S. C., Rushing, P. A., Pritchard, L. M., Woods, S. C. & Seeley, R. J. (2001). Immediate and prolonged patterns of Agouti-related peptide-(83-132)-induced c-Fos activation in hypothalamic and extrahypothalamic site?. Endocrinology 142, 1050–6.CrossRefGoogle Scholar
Hamilton, B. S. & Doods, H. N. (2002). Chronic application of MTII in a rat model of obesity results in sustained weight los?. Obes. Res. 10, 182–7.CrossRefGoogle Scholar
Harrold, J. A. & Williams, G. (2006). Melanocortin-4 receptors, beta-MSH and leptin: key elements in the satiety pathwa?. Peptides 27, 365–71.CrossRefGoogle Scholar
Harrold, J. A., Widdowson, P. S. & Williams, G. (2003). Beta-MSH: a functional ligand that regulated energy homeostasis via hypothalamic MC4-R? Peptides 24, 397–405.CrossRefGoogle ScholarPubMed
Haskell-Luevano, C. & Monck, E. K. (2001). Agouti-related protein functions as an inverse agonist at a constitutively active brain melanocortin-4 recepto?. Regul. Pept. 99, 1–7.CrossRefGoogle Scholar
Haskell-Luevano, C., Chen, P., Li, C.et al. (1999). Characterization of the neuroanatomical distribution of agouti-related protein immunoreactivity in the rhesus monkey and the ra?. Endocrinology 140, 1408–15.CrossRefGoogle Scholar
Heijboer, A. C., Hoek, A. M., Pijl, H.et al. (2005). Intracerebroventricular administration of melanotan II increases insulin sensitivity of glucose disposal in mic?. Diabetologia 48, 1621–6.CrossRefGoogle Scholar
Hentges, S. T., Nishiyama, M., Overstreet, L. S., Stenzel-Poore, M., Williams, J. T. & Low, M. J. (2004). GABA release from proopiomelanocortin neuron?. J. Neurosci. 24, 1578–83.CrossRefGoogle Scholar
Hirsch, M. D. & O'Donohue, T. L. (1985). Characterization of alpha-melanocyte-stimulating hormone in rat pancrea?. Peptides 6, 293–6.CrossRefGoogle Scholar
Hochgeschwender, U., Costa, J. L., Reed, P., Bui, S. & Brennan, M. B. (2003). Altered glucose homeostasis in proopiomelanocortin-null mouse mutants lacking central and peripheral melanocorti?. Endocrinology 144, 5194–202.CrossRefGoogle Scholar
Hoggard, N., Hunter, L., Duncan, J. S. & Rayner, D. V. (2004a). Regulation of adipose tissue leptin secretion by alpha-melanocyte-stimulating hormone and agouti-related protein: further evidence of an interaction between leptin and the melanocortin signalling syste?. J. Mol. Endocrinol. 32, 145–53.CrossRefGoogle Scholar
Hoggard, N., Rayner, D. V., Johnston, S. L. & Speakman, J. R. (2004b). Peripherally administered [Nle4,D-Phe7]-alpha-melanocyte stimulating hormone increases resting metabolic rate, while peripheral agouti-related protein has no effect, in wild type C57BL/6 and ob/ob mic?. J. Mol. Endocrinol. 33, 693–703.CrossRefGoogle Scholar
Hsiung, H. M., Smiley, D. L., Zhang, X. Y.et al. (2005). Potent peptide agonists for human melanocortin 3 and 4 receptors derived from enzymatic cleavages of human beta-MSH(5-22) by dipeptidyl peptidase I and dipeptidyl peptidase I?. Peptides 26, 1988–96.CrossRefGoogle ScholarPubMed
Hsu, R., Taylor, J. R., Newton, S. S.et al. (2005). Blockade of melanocortin transmission inhibits cocaine rewar?. Eur. J. Neurosci. 21, 2233–42.CrossRefGoogle Scholar
Humphreys, M. H. (2007). Cardiovascular and renal actions of melanocyte-stimulating hormone peptide?. Curr. Opin. Nephrol. Hypertens. 16, 32–8.CrossRefGoogle Scholar
Huszar, D., Lynch, C. A., Fairchild-Huntress, V.et al. (1997). Targeted disruption of the melanocortin-4 receptor results in obesity in mic?. Cell 88, 131–41.CrossRefGoogle Scholar
Hwa, J. J., Ghibaudi, L., Gao, J. & Parker, E. M. (2001). Central melanocortin system modulates energy intake and expenditure of obese and lean Zucker rat?. Am. J. Physiol. Regul. Integr. Comp. Physiol. 281, R444–51.CrossRefGoogle Scholar
Irani, B. G. & Haskell-Luevano, C. (2005). Feeding effects of melanocortin ligands – a historical perspectiv?. Peptides 26, 1788–99.CrossRefGoogle Scholar
Kask, A., Rago, L., Wikberg, J. E. & Schioth, H. B. (2000). Differential effects of melanocortin peptides on ingestive behaviour in rats: evidence against the involvement of MC(3) receptor in the regulation of food intak?. Neurosci. Lett. 283, 1–4.CrossRefGoogle Scholar
Kim, Y. W., Choi, D. W., Park, Y. H.et al. (2005). Leptin-like effects of MTII are augmented in MSG-obese rat?. Regul. Pept. 127, 63–70.CrossRefGoogle Scholar
Kishi, T., Aschkenasi, C. J., Lee, C. E., Mountjoy, K. G., Saper, C. B. & Elmquist, J. K. (2003). Expression of melanocortin 4 receptor mRNA in the central nervous system of the ra?. J. Comp. Neurol. 457, 213–35.CrossRefGoogle Scholar
Klusa, V., Svirskis, S., Opmane, B., Muceniece, R. & Wikberg, J. E. (1999). Behavioural responses of gamma-MSH peptides administered into the rat ventral tegmental are?. Acta Physiol. Scand. 167, 99–104.CrossRefGoogle Scholar
Knudtzon, J. (1984). Alpha-melanocyte stimulating hormone increases plasma levels of glucagon and insulin in rabbit?. Life Sci. 34, 547–54.CrossRefGoogle Scholar
Korner, J., Wissig, S., Kim, A., Conwell, I. M. & Wardlaw, S. L. (2003). Effects of agouti-related protein on metabolism and hypothalamic neuropeptide gene expressio?. J. Neuroendocrinol. 15, 1116–21.CrossRefGoogle Scholar
Krude, H., Biebermann, H., Luck, W., Horn, R., Brabant, G. & Gruters, A. (1998). Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in human?. Nat. Genet. 19, 155–7.CrossRefGoogle Scholar
Laurent, V., Jaubert-Miazza, L., Desjardins, R., Day, R. & Lindberg, I. (2004). Biosynthesis of proopiomelanocortin-derived peptides in prohormone convertase 2 and 7B2 null mic?. Endocrinology 145, 519–28.CrossRefGoogle Scholar
Lee, Y. S., Challis, B. G., Thompson, D. A.et al. (2006). A POMC variant implicates beta-melanocyte-stimulating hormone in the control of human energy balanc?. Cell Metab. 3, 135–40.CrossRefGoogle Scholar
Li, G., Zhang, Y., Wilsey, J. T. & Scarpace, P. J. (2004). Unabated anorexic and enhanced thermogenic responses to melanotan II in diet-induced obese rats despite reduced melanocortin 3 and 4 receptor expressio?. J. Endocrinol. 182, 123–32.CrossRefGoogle Scholar
Li, G., Zhang, Y., Wilsey, J. T. & Scarpace, P. J. (2005). Hypothalamic pro-opiomelanocortin gene delivery ameliorates obesity and glucose intolerance in aged rat?. Diabetologia 48, 2376–85.CrossRefGoogle Scholar
Li, Y. Z. & Davidowa, H. (2004). Food deprivation decreases responsiveness of ventromedial hypothalamic neurons to melanocortin?. J. Neurosci. Res. 77, 596–602.CrossRefGoogle Scholar
Lindblom, J., Schioth, H. B., Larsson, A., Wikberg, J. E. & Bergstrom, L. (1998). Autoradiographic discrimination of melanocortin receptors indicates that the MC3 subtype dominates in the medial rat brai?. Brain Res. 810, 161–71.CrossRefGoogle Scholar
Lindblom, J., Opmane, B., Mutulis, F.et al. (2001). The MC4 receptor mediates alpha-MSH induced release of nucleus accumbens dopamin?. Neuroreport 12, 2155–8.CrossRefGoogle Scholar
Liu, H., Kishi, T., Roseberry, A. G.et al. (2003). Transgenic mice expressing green fluorescent protein under the control of the melanocortin-4 receptor promote?. J. Neurosci. 23, 7143–54.Google Scholar
Lloyd, D. J., Bohan, S. & Gekakis, N. (2006). Obesity, hyperphagia and increased metabolic efficiency in Pc1 mutant mic?. Hum. Mol. Genet. 15, 1884–93.CrossRefGoogle Scholar
Lu, D., Willard, D., Patel, I. R.et al. (1994). Agouti protein is an antagonist of the melanocyte-stimulating-hormone recepto?. Nature 371, 799–802.CrossRefGoogle Scholar
Luquet, S., Perez, F. A., Hnasko, T. S. & Palmiter, R. D. (2005). NPY/AgRP neurons are essential for feeding in adult mice but can be ablated in neonate?. Science 310, 683–5.CrossRefGoogle Scholar
MacNeil, D. J., Howard, A. D., Guan, X.et al. (2002). The role of melanocortins in body weight regulation: opportunities for the treatment of obesit?. Eur. J. Pharmacol. 440, 141–57.CrossRefGoogle Scholar
Makimura, H., Mizuno, T. M., Mastaitis, J. W., Agami, R. & Mobbs, C. V. (2002). Reducing hypothalamic AGRP by RNA interference increases metabolic rate and decreases body weight without influencing food intak?. BMC Neurosci. 3, 18.CrossRefGoogle Scholar
Marks, D. L., Ling, N. & Cone, R. D. (2001). Role of the central melanocortin system in cachexi?. Cancer Res. 61, 1432–8.Google Scholar
Marks, D. L., Hruby, V., Brookhart, G. & Cone, R. D. (2006). The regulation of food intake by selective stimulation of the type 3 melanocortin receptor (MC3R?. Peptides 27, 259–64.Google ScholarPubMed
Marsh, D. J., Hollopeter, G., Huszar, D.et al. (1999). Response of melanocortin-4 receptor-deficient mice to anorectic and orexigenic peptide?. Nat. Genet. 21, 119–22.CrossRefGoogle Scholar
Martin, W. J. & MacIntyre, D. E. (2004). Melanocortin receptors and erectile functio?. Eur. Urol. 45, 706–13.CrossRefGoogle Scholar
Mayer, J. P., Hsiung, H. M., Flora, D. B.et al. (2005). Discovery of a beta-MSH-derived MC-4R selective agonis?. J. Med. Chem. 48, 3095–8.CrossRefGoogle Scholar
McMinn, J. E., Wilkinson, C. W., Havel, P. J., Woods, S. C. & Schwartz, M. W. (2000). Effect of intracerebroventricular alpha-MSH on food intake, adiposity, c-Fos induction, and neuropeptide expressio?. Am. J. Physiol. Regul. Integr. Comp. Physiol. 279, R695–703.CrossRefGoogle Scholar
Menyhert, J., Wittmann, G., Hrabovszky, E., Keller, E., Liposits, Z. & Fekete, C. (2006). Interconnection between orexigenic neuropeptide Y- and anorexigenic alpha-melanocyte stimulating hormone-synthesizing neuronal systems of the human hypothalamu?. Brain Res. 1076, 101–5.CrossRefGoogle Scholar
Millington, G. W., Tung, Y. C., Hewson, A. K., O'Rahilly, S. & Dickson, S. L. (2001). Differential effects of alpha-, beta- and gamma(2)-melanocyte-stimulating hormones on hypothalamic neuronal activation and feeding in the fasted ra?. Neuroscience 108, 437–45.CrossRefGoogle Scholar
Mizuno, T. M., Kelley, K. A., Pasinetti, G. M., Roberts, J. L. & Mobbs, C. V. (2003). Transgenic neuronal expression of proopiomelanocortin attenuates hyperphagic response to fasting and reverses metabolic impairments in leptin-deficient obese mic?. Diabetes 52, 2675–83.CrossRefGoogle Scholar
Mounien, L., Bizet, P., Boutelet, I., Vaudry, H. & Jegou, S. (2005). Expression of melanocortin MC3 and MC4 receptor mRNAs by neuropeptide Y neurons in the rat arcuate nucleu?. Neuroendocrinology 82, 164–70.CrossRefGoogle Scholar
Mountjoy, K. G., Mortrud, M. T., Low, M. J., Simerly, R. B. & Cone, R. D. (1994). Localization of the melanocortin-4 receptor (MC4-R) in neuroendocrine and autonomic control circuits in the brai?. Mol. Endocrinol. 8, 1298–308.Google Scholar
Mountjoy, K. G., Wu, C. S., Cornish, J. & Callon, K. E. (2003). alpha-MSH and desacetyl-Alpha-MSH signaling through melanocortin receptor?. Ann. N. Y. Acad. Sci. 994, 58–65.Google Scholar
Nargund, R. P., Strack, A. M. & Fong, T. M. (2006). Melanocortin-4 receptor (MC4R) agonists for the treatment of obesit?. J. Med. Chem. 49, 4035–43.CrossRefGoogle Scholar
Navarro, M., Cubero, I., Chen, A. S.et al. (2005). Effects of melanocortin receptor activation and blockade on ethanol intake: a possible role for the melanocortin-4 recepto?. Alcohol Clin. Exp. Res. 29, 949–57.CrossRefGoogle Scholar
Nijenhuis, W. A., Oosterom, J. & Adan, R. A. (2001). AgRP(83-132) acts as an inverse agonist on the human-melanocortin-4 recepto?. Mol. Endocrinol. 15, 164–71.Google Scholar
Nonogaki, K. (2000). New insights into sympathetic regulation of glucose and fat metabolis?. Diabetologia 43, 533–49.Google Scholar
Obici, S., Feng, Z., Tan, J., Liu, L., Karkanias, G. & Rossetti, L. (2001). Central melanocortin receptors regulate insulin actio?. J. Clin. Invest. 108, 1079–85.CrossRefGoogle Scholar
Ollmann, M. M., Wilson, B. D., Yang, Y. K.et al. (1997). Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protei?. Science 278, 135–8.CrossRefGoogle Scholar
Palkovits, M., Mezey, E. & Eskay, R. L. (1987). Pro-opiomelanocortin-derived peptides (ACTH/beta-endorphin/alpha-MSH) in brainstem baroreceptor areas of the ra?. Brain Res. 436, 323–38.CrossRefGoogle Scholar
Phan, L. K., Chung, W. K. & Leibel, R. L. (2006). The mahoganoid mutation (Mgrn1md) improves insulin sensitivity in mice with mutations in the melanocortin signaling pathway independently of effects on adiposit?. Am. J. Physiol. Endocrinol. Metab. 291, E611–20.CrossRefGoogle Scholar
Pierroz, D. D., Ziotopoulou, M., Ungsunan, L., Moschos, S., Flier, J. S. & Mantzoros, C. S. (2002). Effects of acute and chronic administration of the melanocortin agonist MTII in mice with diet-induced obesit?. Diabetes 51, 1337–45.CrossRefGoogle Scholar
Poggioli, R., Vergoni, A. V. & Bertolini, A. (1986). ACTH-(1-24) and alpha-MSH antagonize feeding behavior stimulated by kappa opiate agonist?. Peptides 7, 843–8.CrossRefGoogle Scholar
Pritchard, L. E., Turnbull, A. V. & White, A. (2002). Pro-opiomelanocortin processing in the hypothalamus: impact on melanocortin signalling and obesit?. J. Endocrinol. 172, 411–21.CrossRefGoogle Scholar
Pritchard, L. E., Armstrong, D., Davies, N.et al. (2004). Agouti-related protein (83-132) is a competitive antagonist at the human melanocortin-4 receptor: no evidence for differential interactions with pro-opiomelanocortin-derived ligand?. J. Endocrinol. 180, 183–91.CrossRefGoogle Scholar
Qian, S., Chen, H., Weingarth, D.et al. (2002). Neither agouti-related protein nor neuropeptide Y is critically required for the regulation of energy homeostasis in mic?. Mol. Cell Biol. 22, 5027–35.CrossRefGoogle Scholar
Raposinho, P. D., White, R. B. & Aubert, M. L. (2003). The melanocortin agonist Melanotan-II reduces the orexigenic and adipogenic effects of neuropeptide Y (NPY) but does not affect the NPY-driven suppressive effects on the gonadotropic and somatotropic axes in the male ra?. J. Neuroendocrinol. 15, 173–81.Google ScholarPubMed
Robbins, L. S., Nadeau, J. H., Johnson, K. R.et al. (1993). Pigmentation phenotypes of variant extension locus alleles result from point mutations that alter MSH receptor functio?. Cell 72, 827–34.CrossRefGoogle Scholar
Romijn, J. A. & Fliers, E. (2005). Sympathetic and parasympathetic innervation of adipose tissue: metabolic implication?. Curr. Opin. Clin. Nutr. Metab. Care 8, 440–4.CrossRefGoogle Scholar
Roselli-Rehfuss, L., Mountjoy, K. G., Robbins, L. S.et al. (1993). Identification of a receptor for gamma melanotropin and other proopiomelanocortin peptides in the hypothalamus and limbic syste?. Proc. Natl. Acad. Sci. USA 90, 8856–60.CrossRefGoogle Scholar
Rossi, M., Kim, M. S., Morgan, D. G.et al. (1998). A C-terminal fragment of Agouti-related protein increases feeding and antagonizes the effect of alpha-melanocyte stimulating hormone in viv?. Endocrinology 139, 4428–31.CrossRefGoogle Scholar
Rothwell, N. J. & Stock, M. J. (1985). Acute and chronic effects of ACTH on thermogenesis and brown adipose tissue in the ra?. Comp. Biochem. Physiol. A. 81, 99–102.CrossRefGoogle Scholar
Savontaus, E., Breen, T. L., Kim, A., Yang, L. M., Chua, S. C. Jr. & Wardlaw, S. L. (2004). Metabolic effects of transgenic melanocyte-stimulating hormone overexpression in lean and obese mic?. Endocrinology 145, 3881–91.Google Scholar
Schioth, H. B., Haitina, T., Ling, M. K.et al. (2005). Evolutionary conservation of the structural, pharmacological, and genomic characteristics of the melanocortin receptor subtype?. Peptides 26, 1886–900.CrossRefGoogle Scholar
Shimizu, H., Shargill, N. S., Bray, G. A., Yen, T. T. & Gesellchen, P. D. (1989). Effects of MSH on food intake, body weight and coat color of the yellow obese mous?. Life Sci. 45, 543–52.CrossRefGoogle Scholar
Shimizu, H., Tanaka, Y., Sato, N. & Mori, M. (1995). Alpha-melanocyte-stimulating hormone (MSH) inhibits insulin secretion in HIT-T 15 cell?. Peptides 16, 605–8.CrossRefGoogle Scholar
Small, C. J., Kim, M. S., Stanley, S. A.et al. (2001). Effects of chronic central nervous system administration of agouti-related protein in pair-fed animal?. Diabetes 50, 248–54.CrossRefGoogle Scholar
Small, C. J., Liu, Y. L., Stanley, S. A.et al. (2003). Chronic CNS administration of Agouti-related protein (Agrp) reduces energy expenditur?. Int. J. Obes. Relat. Metab. Disord. 27, 530–3.CrossRefGoogle Scholar
Smart, J. L., Tolle, V. & Low, M. J. (2006). Glucocorticoids exacerbate obesity and insulin resistance in neuron-specific proopiomelanocortin-deficient mic?. J. Clin. Invest. 116, 495–505.CrossRefGoogle Scholar
Smart, J. L., Tolle, V., Otero-Corchon, V. & Low, M. J. (2007). Central dysregulation of the hypothalamic-pituitary-adrenal axis in neuron-specific proopiomelanocortin-deficient mic?. Endocrinology. 148, 647–59.CrossRefGoogle Scholar
Smith, M. A., Hisadome, K., Al-Qassab, H., Heffron, H., Withers, D. J. & Ashford, M. L. (2006). Melanocortins and AGRP modulate mouse arcuate nucleus POMC and RIPCre neuron excitability by alteration of resting potassium conductance?. J. Physiol. (in press)Google Scholar
Song, C. K., Jackson, R. M., Harris, R. B., Richard, D. & Bartness, T. J. (2005). Melanocortin-4 receptor mRNA is expressed in sympathetic nervous system outflow neurons to white adipose tissu?. Am. J. Physiol. Regul. Integr. Comp. Physiol. 289, R1467–76.CrossRefGoogle Scholar
Song, Y., Golling, G., Thacker, T. L. & Cone, R. D. (2003). Agouti-related protein (AGRP) is conserved and regulated by metabolic state in the zebrafis?, Danio rerio. Endocrine 22, 257–65.CrossRefGoogle Scholar
Srinivasan, S., Lubrano-Berthelier, C., Govaerts, C.et al. (2004). Constitutive activity of the melanocortin-4 receptor is maintained by its N-terminal domain and plays a role in energy homeostasis in human?. J. Clin. Invest. 114, 1158–64.CrossRefGoogle Scholar
Ste Marie, L., Miura, G. I., Marsh, D. J., Yagaloff, K. & Palmiter, R. D. (2000). A metabolic defect promotes obesity in mice lacking melanocortin-4 receptor?. Proc. Natl. Acad. Sci. USA 97, 12 339–44.CrossRefGoogle Scholar
Strader, A. D., Schioth, H. B. & Buntin, J. D. (2003). The role of the melanocortin system and the melanocortin-4 receptor in ring dove (Streptopelia risoria) feeding behavio?. Brain Res. 960, 112–21.CrossRefGoogle Scholar
Sutton, G. M., Duos, B., Patterson, L. M. & Berthoud, H. R. (2005). Melanocortinergic modulation of cholecystokinin-induced suppression of feeding through extracellular signal-regulated kinase signaling in rat solitary nucleu?. Endocrinology 146, 3739–47.CrossRefGoogle Scholar
Tallam, L. S., Kuo, J. J., da Silva, A. A. & Hall, J. E. (2004). Cardiovascular, renal, and metabolic responses to chronic central administration of agouti-related peptid?. Hypertension 44, 853–8.CrossRefGoogle Scholar
Thiele, T. E., Dijk, G., Yagaloff, K. A.et al. (1998). Central infusion of melanocortin agonist MTII in rats: assessment of c-Fos expression and taste aversio?. Am. J. Physiol. 274, R248–54.Google Scholar
Tung, Y. C., Piper, S. J., Yeung, D., O'Rahilly, S. & Coll, A. P. (2006). A comparative study of the central effects of specific proopiomelancortin (POMC)-derived melanocortin peptides on food intake and body weight in pomc null mic?. Endocrinology 147, 5940–7.CrossRefGoogle Scholar
Uno, K., Katagiri, H., Yamada, T.et al. (2006). Neuronal pathway from the liver modulates energy expenditure and systemic insulin sensitivit?. Science 312, 1656–9.CrossRefGoogle Scholar
Vaughan, C., Moore, M., Haskell-Luevano, C. & Rowland, N. E. (2006). Food motivated behavior of melanocortin-4 receptor knockout mice under a progressive ratio schedul?. Peptides 27, 2829–35.CrossRefGoogle Scholar
Williams, D. L., Grill, H. J., Weiss, S. M., Baird, J. P. & Kaplan, J. M. (2002). Behavioral processes underlying the intake suppressive effects of melanocortin 3/4 receptor activation in the ra?. Psychopharmacology (Berl.) 161, 47–53.CrossRefGoogle Scholar
Williams, D. L., Bowers, R. R., Bartness, T. J., Kaplan, J. M. & Grill, H. J. (2003). Brainstem melanocortin 3/4 receptor stimulation increases uncoupling protein gene expression in brown fa?. Endocrinology 144, 4692–7.CrossRefGoogle Scholar
Wortley, K. E., Anderson, K. D., Yasenchak, J.et al. (2005). Agouti-related protein-deficient mice display an age-related lean phenotyp?. Cell Metab. 2, 421–7.CrossRefGoogle Scholar
Yasuda, T., Masaki, T., Kakuma, T. & Yoshimatsu, H. (2004). Hypothalamic melanocortin system regulates sympathetic nerve activity in brown adipose tissu?. Exp. Biol. Med. (Maywood) 229, 235–9.CrossRefGoogle Scholar
Yaswen, L., Diehl, N., Brennan, M. B. & Hochgeschwender, U. (1999). Obesity in the mouse model of pro-opiomelanocortin deficiency responds to peripheral melanocorti?. Nat. Med. 5, 1066–70.CrossRefGoogle Scholar
Zhang, Y., Matheny, M., Tumer, N. & Scarpace, P. J. (2004). Aged-obese rats exhibit robust responses to a melanocortin agonist and antagonist despite leptin resistanc?. Neurobiol. Aging 25, 1349–60.CrossRefGoogle Scholar
Zheng, H., Patterson, L. M., Phifer, C. B. & Berthoud, H. R. (2005). Brain stem melanocortinergic modulation of meal size and identification of hypothalamic POMC projection?. Am. J. Physiol. Regul. Integr. Comp. Physiol. 289, R247–58.Google Scholar
Zhu, X., Zhou, A., Dey, A.et al. (2002). Disruption of PC1/3 expression in mice causes dwarfism and multiple neuroendocrine peptide processing defect?. Proc. Natl. Acad. Sci. USA 99, 10 293–8.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Melanocortins and the control of body weight
    • By Virginie Tolle, MR. 549 INSERM-Université Paris, V, IFR Broca Ste-Anne, Paris, France, Malcolm J. Low, Center for the Study of Weight Regulation, Mail code L481, Oregon Health & Science University, 3181, SW Sam Jackson Park Road, Portland, OR 97239–3098, USA
  • Edited by Jenni Harvey, University of Dundee, Dominic J. Withers, Imperial College of Science, Technology and Medicine, London
  • Book: Neurobiology of Obesity
  • Online publication: 15 September 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541643.008
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Melanocortins and the control of body weight
    • By Virginie Tolle, MR. 549 INSERM-Université Paris, V, IFR Broca Ste-Anne, Paris, France, Malcolm J. Low, Center for the Study of Weight Regulation, Mail code L481, Oregon Health & Science University, 3181, SW Sam Jackson Park Road, Portland, OR 97239–3098, USA
  • Edited by Jenni Harvey, University of Dundee, Dominic J. Withers, Imperial College of Science, Technology and Medicine, London
  • Book: Neurobiology of Obesity
  • Online publication: 15 September 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541643.008
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Melanocortins and the control of body weight
    • By Virginie Tolle, MR. 549 INSERM-Université Paris, V, IFR Broca Ste-Anne, Paris, France, Malcolm J. Low, Center for the Study of Weight Regulation, Mail code L481, Oregon Health & Science University, 3181, SW Sam Jackson Park Road, Portland, OR 97239–3098, USA
  • Edited by Jenni Harvey, University of Dundee, Dominic J. Withers, Imperial College of Science, Technology and Medicine, London
  • Book: Neurobiology of Obesity
  • Online publication: 15 September 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541643.008
Available formats
×