Book contents
- Frontmatter
- Contents
- List of contributors
- Preface
- Part I Physiology and pathophysiology of nerve fibres
- Part II Pain
- Part III Control of central nervous system output
- 18 Synaptic transduction in neocortical neurones
- 19 Cortical circuits, synchronization and seizures
- 20 Physiologically induced changes of brain temperature and their effect on extracellular field potentials
- 21 Fusimotor control of the respiratory muscles
- 22 Cerebral accompaniments and functional significance of the long-latency stretch reflexes in human forearm muscles
- 23 The cerebellum and proprioceptive control of movement
- 24 Roles of the lateral nodulus and uvula of the cerebellum in cardiovascular control
- 25 Central actions of curare and gallamine: implications for reticular reflex myoclonus?
- 26 Pathophysiology of upper motoneurone disorders
- 27 Modulation of hypoglossal motoneurones by thyrotropin-releasing hormone and serotonin
- 28 Serotonin and central respiratory disorders in the newborn
- 29 Are medullary respiratory neurones multipurpose neurones?
- 30 Reflex control of expiratory motor output in dogs
- 31 Abnormal thoraco-abdominal movements in patients with chronic lung disease
- 32 Respiratory rhythms and apnoeas in the newborn
- 33 Cardiorespiratory interactions during apnoea
- 34 Impairment of respiratory control in neurological disease
- 35 The respiratory muscles in neurological disease
- Part IV Development, survival, regeneration and death
- Index
18 - Synaptic transduction in neocortical neurones
from Part III - Control of central nervous system output
Published online by Cambridge University Press: 04 August 2010
- Frontmatter
- Contents
- List of contributors
- Preface
- Part I Physiology and pathophysiology of nerve fibres
- Part II Pain
- Part III Control of central nervous system output
- 18 Synaptic transduction in neocortical neurones
- 19 Cortical circuits, synchronization and seizures
- 20 Physiologically induced changes of brain temperature and their effect on extracellular field potentials
- 21 Fusimotor control of the respiratory muscles
- 22 Cerebral accompaniments and functional significance of the long-latency stretch reflexes in human forearm muscles
- 23 The cerebellum and proprioceptive control of movement
- 24 Roles of the lateral nodulus and uvula of the cerebellum in cardiovascular control
- 25 Central actions of curare and gallamine: implications for reticular reflex myoclonus?
- 26 Pathophysiology of upper motoneurone disorders
- 27 Modulation of hypoglossal motoneurones by thyrotropin-releasing hormone and serotonin
- 28 Serotonin and central respiratory disorders in the newborn
- 29 Are medullary respiratory neurones multipurpose neurones?
- 30 Reflex control of expiratory motor output in dogs
- 31 Abnormal thoraco-abdominal movements in patients with chronic lung disease
- 32 Respiratory rhythms and apnoeas in the newborn
- 33 Cardiorespiratory interactions during apnoea
- 34 Impairment of respiratory control in neurological disease
- 35 The respiratory muscles in neurological disease
- Part IV Development, survival, regeneration and death
- Index
Summary
Introduction
Neurotransmitters mediate information transfer between neurones and in most cell types synaptic activity evokes slow potentials that are transduced into all-or-nothing action potentials. The primary site for integration of neuronal activity is on the soma and dendrites where input from many different sources converge and generate spike trains in neurones by summed synaptic currents. The molecular events during synaptic communication also provide many sites for modulation. Here I consider only the last step of the postsynaptic transduction operation where slow synaptic potentials are transduced into nerve impulses. This process is controlled by the type and density of voltage and chemically gated ion channels in the postsynaptic neurone. The model system discussed here is the pyramidal neurones in layer V of rat and cat somatosensory cortex. The pattern of evoked repetitive firing in pyramidal neurones has functional significance. Lemon & Mantel (1989) found that even a single spike in a corticospinal neurone produced a measurable facilitation of the target muscle electromyogram.
Types of channels in neocortical neurones
Central neurones uniformly have many types of ion channels. No one type occurs only in a single class of neurones. The collection of ion channel types provides great diversity in the voltage dependence, kinetics and modulation by neurotransmitters. In a specific neurone type modest changes in density, location or modulation of ion channels can markedly alter neurone behaviour. The paper physiologist can easily generate models with many different response patterns.
- Type
- Chapter
- Information
- The Neurobiology of DiseaseContributions from Neuroscience to Clinical Neurology, pp. 201 - 209Publisher: Cambridge University PressPrint publication year: 1996