Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-05T14:52:33.350Z Has data issue: false hasContentIssue false

9 - Pathophysiology of human demyelinating neuropathies

from Part I - Physiology and pathophysiology of nerve fibres

Published online by Cambridge University Press:  04 August 2010

T. E. Feasby
Affiliation:
Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
Hugh Bostock
Affiliation:
Institute of Neurology, London
P. A. Kirkwood
Affiliation:
Institute of Neurology, London
A. H. Pullen
Affiliation:
Institute of Neurology, London
Get access

Summary

Introduction

This chapter will review our understanding of the pathophysiology of the human demyelinating neuropathies with particular emphasis on acute Guillain–Barré syndrome (GBS). Abnormalities of conduction in peripheral nerves are secondary to changes in the axon or its myelin sheath. Those affecting the axon include neuronal or axonal degeneration, axonal shrinkage and, theoretically, alterations of ion channels. The last are usually pharmacological or toxicological. Abnormalities of myelin include demyelination, both segmental and paranodal, and reduced thickness of the sheath. The two major pathological lesions, axonal degeneration and demyelination, are sufficient to explain most of the clinical and physiological deficits in GBS.

Demyelination and conduction block

The first inference of conduction block was by Erb (1876) who studied focal traumatic nerve lesions. He observed that, in some patients, faradic stimulation could activate the nerve distal to a lesion. He postulated that the nerve fibres had not degenerated. Just a few years later, Gombault (1881) demonstrated myelin sheath abnormalities at the site of focal nerve lesions but these observations were not linked to those of Erb.

Seddon (1943), in his studies of war nerve injuries, classified them into three categories: neurotmesis, axonotmesis and neurapraxia. The first two were characterized by transection of the whole nerve and the axons respectively, with degeneration of the distal portions of the axons. In neurapraxia, however, the nerve trunk remained intact, the distal axons did not degenerate and recovery occurred after a short interval.

Type
Chapter
Information
The Neurobiology of Disease
Contributions from Neuroscience to Clinical Neurology
, pp. 86 - 94
Publisher: Cambridge University Press
Print publication year: 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×