Book contents
- Frontmatter
- Contents
- List of contributors
- Preface
- Part I Physiology and pathophysiology of nerve fibres
- 1 Ion channels in normal and pathophysiological mammalian peripheral myelinated nerve
- 2 Molecular anatomy of the node of Ranvier: newer concepts
- 3 Delayed rectifier type potassium currents in rabbit and rat axons and rabbit Schwann cells
- 4 Axonal signals for potassium channel expression in Schwann cells
- 5 Ion channels in human axons
- 6 An in vitro model of diabetic neuropathy: electrophysiological studies
- 7 Autoimmunity at the neuromuscular junction
- 8 Immunopathology and pathophysiology of experimental autoimmune encephalomyelitis
- 9 Pathophysiology of human demyelinating neuropathies
- 10 Conduction properties of central demyelinated axons: the generation of symptoms in demyelinating disease
- 11 Mechanisms of relapse and remission in multiple sclerosis
- 12 Glial transplantation in the treatment of myelin loss or deficiency
- Part II Pain
- Part III Control of central nervous system output
- Part IV Development, survival, regeneration and death
- Index
11 - Mechanisms of relapse and remission in multiple sclerosis
from Part I - Physiology and pathophysiology of nerve fibres
Published online by Cambridge University Press: 04 August 2010
- Frontmatter
- Contents
- List of contributors
- Preface
- Part I Physiology and pathophysiology of nerve fibres
- 1 Ion channels in normal and pathophysiological mammalian peripheral myelinated nerve
- 2 Molecular anatomy of the node of Ranvier: newer concepts
- 3 Delayed rectifier type potassium currents in rabbit and rat axons and rabbit Schwann cells
- 4 Axonal signals for potassium channel expression in Schwann cells
- 5 Ion channels in human axons
- 6 An in vitro model of diabetic neuropathy: electrophysiological studies
- 7 Autoimmunity at the neuromuscular junction
- 8 Immunopathology and pathophysiology of experimental autoimmune encephalomyelitis
- 9 Pathophysiology of human demyelinating neuropathies
- 10 Conduction properties of central demyelinated axons: the generation of symptoms in demyelinating disease
- 11 Mechanisms of relapse and remission in multiple sclerosis
- 12 Glial transplantation in the treatment of myelin loss or deficiency
- Part II Pain
- Part III Control of central nervous system output
- Part IV Development, survival, regeneration and death
- Index
Summary
Introduction
In the late 1960s Tom Sears and I showed that either complete or partial conduction block resulted from demyelination of central nerve fibres induced by diphtheria toxin. When conduction survived it was slow, and insecure; the refractory period of transmission (a term coined by Tom in the course of these experiments) was prolonged and the damaged fibres were unable to conduct long trains of impulses at high frequencies (McDonald & Sears, 1970).
The introduction of evoked potential methods for assessing transmission in afferent pathways in man in the 1970s then made it possible to interpret some of the clinical phenomena of demyelinating disease (and in particular of multiple sclerosis) on the basis of the earlier experimental work. Multiple sclerosis (MS) is characterized by four main pathological changes: demyelination with preservation of axons, Wallerian degeneration (scanty in the early stages, more marked later), astrocytic proliferation and varying amounts of inflammation. A variable amount of remyelination also occurs. In considering the mechanism of the conduction changes, it seemed likely that demyelination per se made an important contribution as it does in experimental demyelination in the peripheral nervous system (McDonald, 1963; Rasminsky & Sears, 1972). Whether this was the whole explanation remained an unexplored issue until the technical advances of the 1980s led to the application of high-resolution magnetic resonance imaging (MRI) to the study of MS. These advances allowed us to tackle the questions ‘What factors contribute to relapse?’ and ‘What factors contribute to remission?’
- Type
- Chapter
- Information
- The Neurobiology of DiseaseContributions from Neuroscience to Clinical Neurology, pp. 118 - 123Publisher: Cambridge University PressPrint publication year: 1996