Book contents
- Frontmatter
- Contents
- List of contributors
- Preface
- Part I Physiology and pathophysiology of nerve fibres
- 1 Ion channels in normal and pathophysiological mammalian peripheral myelinated nerve
- 2 Molecular anatomy of the node of Ranvier: newer concepts
- 3 Delayed rectifier type potassium currents in rabbit and rat axons and rabbit Schwann cells
- 4 Axonal signals for potassium channel expression in Schwann cells
- 5 Ion channels in human axons
- 6 An in vitro model of diabetic neuropathy: electrophysiological studies
- 7 Autoimmunity at the neuromuscular junction
- 8 Immunopathology and pathophysiology of experimental autoimmune encephalomyelitis
- 9 Pathophysiology of human demyelinating neuropathies
- 10 Conduction properties of central demyelinated axons: the generation of symptoms in demyelinating disease
- 11 Mechanisms of relapse and remission in multiple sclerosis
- 12 Glial transplantation in the treatment of myelin loss or deficiency
- Part II Pain
- Part III Control of central nervous system output
- Part IV Development, survival, regeneration and death
- Index
3 - Delayed rectifier type potassium currents in rabbit and rat axons and rabbit Schwann cells
from Part I - Physiology and pathophysiology of nerve fibres
Published online by Cambridge University Press: 04 August 2010
- Frontmatter
- Contents
- List of contributors
- Preface
- Part I Physiology and pathophysiology of nerve fibres
- 1 Ion channels in normal and pathophysiological mammalian peripheral myelinated nerve
- 2 Molecular anatomy of the node of Ranvier: newer concepts
- 3 Delayed rectifier type potassium currents in rabbit and rat axons and rabbit Schwann cells
- 4 Axonal signals for potassium channel expression in Schwann cells
- 5 Ion channels in human axons
- 6 An in vitro model of diabetic neuropathy: electrophysiological studies
- 7 Autoimmunity at the neuromuscular junction
- 8 Immunopathology and pathophysiology of experimental autoimmune encephalomyelitis
- 9 Pathophysiology of human demyelinating neuropathies
- 10 Conduction properties of central demyelinated axons: the generation of symptoms in demyelinating disease
- 11 Mechanisms of relapse and remission in multiple sclerosis
- 12 Glial transplantation in the treatment of myelin loss or deficiency
- Part II Pain
- Part III Control of central nervous system output
- Part IV Development, survival, regeneration and death
- Index
Summary
Introduction
Impulse transmission along a myelinated axon is saltatory, where only the axonal membrane at the nodes of Ranvier is subject to the full action potential. As a consequence of the cytoarchitecture of myelinated nerve, a node of Ranvier can be charged and discharged with a time constant of « 1 ms as its capacity is small (1–2 pF), and its apparent leakage conductance is large (about 20 nS). Delayed rectification is thus not necessary for rapid nodal repolarization. Na+ channel inactivation and the cessation of Na+ ion influx allows rapid repolarization with outward current flow in the leakage pathway. Pharmacological blockade of Xenopus or Rana nodal delayed rectifier with, for example, tetraethylammonium (TEA) ions (Schmidt & Stämpfli, 1966) or extracellular gallamine (Smith & Schauf, 1981; modelled by Frankenhaeuser & Huxley, 1964) causes only a slight prolongation of the action potential (∼0.3 ms at 20 °C). The few rapidly activating K+ channels found at mammalian nodes do not contribute significantly to repolarization (rabbit: Chiu et al., 1979; rat: Brismar, 1980).
The large leakage conductance of the node of Ranvier, as measured in nodal voltage-clamp experiments, is now believed to be part of a current pathway under or through the myelin sheath that allows the internodal axolemma to repolarize the node (Barrett & Barrett, 1982; Blight, 1985; Baker et al., 1987). The movement of charge in this circuit from the node to the internodal capacity during an action potential gives rise to the depolarizing (or negative) after-potential, and an associated phase of increased excitability to applied currents.
- Type
- Chapter
- Information
- The Neurobiology of DiseaseContributions from Neuroscience to Clinical Neurology, pp. 29 - 36Publisher: Cambridge University PressPrint publication year: 1996